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a b s t r a c t 

The Shapley Value and the Fair Proportion Index of phylogenetic trees have been frequently discussed as 

prioritization tools in conservation biology. Both indices rank species according to their contribution to 

total phylogenetic diversity, allowing for a simple conservation criterion. While both indices have their 

specific advantages and drawbacks, it has recently been shown that both values are closely related. How- 

ever, as different authors use different definitions of the Shapley Value, the specific degree of relatedness 

depends on the specific version of the Shapley Value – it ranges from a high correlation index to equality 

of the indices. In this note, we first give an overview of the different indices. Then we turn our attention 

to the mere ranking order provided by either of the indices. We compare the rankings obtained from 

different versions of the Shapley Value for a phylogenetic tree of European amphibians and illustrate 

their differences. We then undertake further analyses on simulated data and show that even though the 

chance of two rankings being exactly identical (when obtained from different versions of the Shapley 

Value) decreases with an increasing number of taxa, the distance between the two rankings converges 

to zero, i.e., the rankings are becoming more and more alike. Moreover, we introduce our freely available 

software package FairShapley, which was implemented in Perl and with which all calculations have been 

performed. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Due to limited financial means, biodiversity conservation pro- 

grams often need to prioritize the species to conserve. Two indices 

used in this matter are the Shapley Value and the Fair Proportion 

Index. Both are based on phylogenetic trees and rank species ac- 

cording to their contribution to overall biodiversity. 

The Shapley Value was first introduced by Haake et al. 

(2007) for unrooted trees and reflects the average biodiversity con- 

tribution of a species. The Fair Proportion Index, on the other hand, 

lacks a biological link to conservation, but is significantly easier 

to calculate and has been preferred in practice. Under a different 

name (ED for Evolutionary Distinctiveness ) the Fair Proportion In- 

dex has for example been used in the ‘EDGE of Existence’ Project, 

established by the Zoological Society of London in 2007 (see Isaac 

et al., 2007 ). However, Hartmann (2013) observed a strong corre- 

lation between the Shapley Value and the Fair Proportion Index 

on rooted trees, where the Shapley Value was calculated for the 

unrooted version of the tree by suppressing the root vertex. Very 
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recently, Fuchs and Jin (2015) have extended the concept of the 

Shapley Value to rooted trees and have shown that the two indices 

are identical for these trees. They also introduced a slightly modi- 

fied version of the Shapley Value, which again is highly correlated 

to the Fair Proportion Index. 

In this note we first give an overview of the various versions 

of the Shapley Value and their respective relatedness with the Fair 

Proportion Index, before we focus on the mere ranking order of 

taxa obtained from different versions of the indices. Although the 

indices are highly correlated, they can result in different ranking 

orders, especially when the trees become large. We will show with 

a simulation study based on random trees that in fact, despite the 

increasing correlation as the number of species grows, different 

ranking orders are still more likely than equal ones. Therefore, in 

order to demonstrate what the correlation really implies, we treat 

the ranking lists as vectors and use the so-called Manhattan dis- 

tance to measure the difference between two rankings suggested 

by different indices. We then show that the distance between these 

rankings tends to 0 as the number of species grows. 

All calculations in this manuscript were performed using our 

new software tool FairShapley, which has been made publicly 

available at http://www.mareikefischer.de/Software/FairShapley.zip . 

This tool, which was implemented in Perl, is able to calculate all 
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versions of the Shapley Value as well as the Fair Proportion Index 

as explained in this paper. 

2. Preliminaries 

Before we can present our results, we need to introduce some 

notation and definitions. Recall that a phylogenetic tree is a con- 

nected, acyclic graph, where the leaves are bijectively labelled by 

some set X of species, which are also often called taxa. A rooted 

phylogenetic tree is a phylogenetic tree with a designated root 

node ρ . In biology, binary phylogenetic trees are of particular im- 

portance. A phylogenetic tree is called unrooted binary if all inter- 

nal nodes have degree 3. It is called rooted binary if all internal 

nodes have degree 3 except for one specified root node ρ of de- 

gree 2. Throughout this paper, we always specify whether we are 

referring to rooted or unrooted trees. When we write T u , this no- 

tation refers to an unrooted phylogenetic tree, whereas T r always 

refers to a rooted phylogenetic tree. In both cases, when we re- 

fer to the size of a tree, we mean the number n = | X| of taxa, i.e., 

the number of leaves of the tree under consideration. Note that a 

rooted tree can also be turned into an unrooted tree by abolishing 

the designation of a specified root node. In case of binary phylo- 

genetic trees, a rooted tree can be turned into an unrooted tree by 

suppressing the root node ρ , i.e., by deleting ρ and the two edges 

adjacent to it and re-connecting the two resulting degree-2 ver- 

tices with a new edge. We subsequently elaborate how turning a 

rooted tree into an unrooted one can change the various diversity 

indices. 

In biodiversity conservation, the phylogenetic diversity of a set of 

species plays an important role. This concept captures how diverse 

or different a set of species is. Mathematically, this requires the 

trees under consideration to come with edge lengths (e.g., repre- 

senting evolutionary time since the last common ancestor or sub- 

stitution rate). Therefore, we assume all edges in the trees to have 

positive edge lengths assigned to them, and we denote the length 

of an edge e as λe . Moreover, recall that a rooted tree is called 

ultrametric if the path lengths from all leaves to the root are iden- 

tical. Here, the path lengths are calculated as the sum of all edge 

lengths on the path from a leaf to the root. The concept of ultra- 

metric trees is also often referred to as the molecular clock hypoth- 

esis in biology. Note, however, that throughout this paper we do 

not assume ultrametricity unless stated otherwise. 

We are now in the position to formally define phylogenetic di- 

versity, or PD for short. 

Definition 1. The phylogenetic diversity ( PD ) of a phylogenetic tree 

is defined as follows: 

1. For a rooted phylogenetic tree T r with leaf set X , the PD 

r of 

a subset S ⊆ X of taxa is calculated by summing up the edge 

lengths of the phylogenetic subtree of T r containing S and the 

root (i.e., the sum of branch lengths in the smallest spanning 

tree in T r containing S and the root). Thus, the PD of a single 

taxon is the length of the path from the root to the leaf repre- 

senting this taxon. 

2. In case of an unrooted phylogenetic tree T u , the unrooted phy- 

logenetic diversity, PD 

u , of a subset S ⊆ X of taxa is defined as 

the sum of edge lengths in the minimal spanning tree in T u 

connecting those leaves. The PD of a single taxon is defined 

as 0. 

Note that in an ultrametric tree, all taxa have the same PD 

r , and 

note that if one considers the unrooted version T u of a rooted tree 

T r , the PD may decrease due to the different definitions. 

Example 1. Consider Fig. 1 , which depicts trees T r and T u on taxon 

set X = { A, B, C, D } . Note that here, T u is the tree you get by sup- 

pressing the root of T r . Now consider the highlighted subset S = 

{ A, B } ⊆ X . The phylogenetic diversity of S can be calculated as fol- 

lows: P D 

r (S) = 1 + 1 + 1 + 1 = 4 , and P D 

u (S) = 1 + 1 = 2 . The dif- 

ference between the two definitions of diversity can be explained 

by the path of length 2 connecting S with the root, which is disre- 

garded in the unrooted case. 

One more concept we need before we can turn our attention 

to diversity prioritization indices is the concept of a ranking . Here, 

a ranking r is just an assignment of ranking numbers to the ele- 

ments of X , where for any pair of taxa x , y ∈ X , x either receives a 

higher or lower ranking number than y or the ranking numbers of 

x and y are equal (we then call x and y tied). We say that a func- 

tion f : X → R induces a ranking r f if the ranking number of x in r f 
is smaller than the ranking number of y precisely if f (x ) > f (y ) . If 

f (x ) = f (y ) for some x � = y , x and y receive the same ranking num- 

ber. 

Example 2. Let X = { A, B, C, D } . Let f (A ) = 0 . 5 , f (B ) = 3 , f (C) = 

0 . 2 and f (D ) = 1 . 5 . Then the induced ranking is r f (A, B, C, D ) = 

(3 , 1 , 4 , 2) . Now let g(A ) = 0 . 5 , g(B ) = 0 . 5 , g(C) = 0 . 2 and g(D ) = 

1 . 5 . Then we retrieve the induced ranking r g (A, B, C, D ) = 

(2 , 2 , 4 , 1) , where A and B are tied. 

Next, recall that the so-called Manhattan distance d 1 (also 

known as L 1 distance or l 1 metric) between two vectors r, s ∈ R 

n 

is defined as follows: 

d 1 (r, s ) = ‖ r − s ‖ = 

n ∑ 

i =1 

| r(i ) − s (i ) | . 

We will later on use the Manhattan distance to measure the 

difference between two rankings induced by different biodiversity 

indices. Notice that for comparing rankings, often the so-called 

Kendall tau distance is used. The Kendall tau distance counts the 

number of pairwise disagreements between two rankings, but can 

only deal with total rankings, i.e. rankings without ties. As rankings 

obtained by different biodiversity indices may include ties, we use 

the Manhattan distance instead (Comparisons where the Kendall 

tau distance is used by breaking ties arbitrarily can be found in 

the supporting information (S1 Text)). 

However, since we want to observe the behavior of the differ- 

ent prioritization indices for increasing numbers of taxa, we need 

to normalize the calculated distances. This is due to the fact that 

whenever the number of taxa increases, even small differences be- 

tween two rankings have a higher impact on the distance. So we 

need to normalize in order to take into account that whenever the 

number of taxa increases, the maximum possible Manhattan dis- 

tance increases, too. So we divide exactly by this factor. Thus, we 

define the normalized Manhattan distance d ∗
1 
(r 1 , r 2 ) for two rank- 

ings r 1 and r 2 with associated ranking vectors v r 1 and v r 2 as fol- 

lows: 

d ∗1 (r 1 , r 2 ) := 

d 1 (v r 1 , v r 2 ) 
max 

r ′ ,s ′ 
d 1 (v r ′ , v s ′ ) 

. 

Note that the maximum in the denominator is obtained when 

r ′ = (1 , 2 , . . . , n ) and s ′ = (n, n − 1 , . . . , 1) . 

Now we are in a position to introduce the biodiversity indices, 

which we will analyze in the following. 

2.1. Various indices for biodiversity conservation 

In this section, we will present and analyze some indices for 

biodiversity conservation, which have recently been discussed in 

the literature. All of these indices turn out to be related, but as 

different authors use different definitions of these indices, their re- 

sults sometimes differ. We will therefore give an overview about 

the relationships of the various definitions. 
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