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a b s t r a c t 

The prisoner’s dilemma describes a conflict between a pair of players, in which defection is a dominant 

strategy whereas cooperation is collectively optimal. The iterated version of the dilemma has been ex- 

tensively studied to understand the emergence of cooperation. In the evolutionary context, the iterated 

prisoner’s dilemma is often combined with population dynamics, in which a more successful strategy 

replicates itself with a higher growth rate. Here, we investigate the replicator dynamics of three represen- 

tative strategies, i.e., unconditional cooperation, unconditional defection, and tit-for-tat, which prescribes 

reciprocal cooperation by mimicking the opponent’s previous move. Our finding is that the dynamics is 

self-dual in the sense that it remains invariant when we apply time reversal and exchange the fractions 

of unconditional cooperators and defectors in the population. The duality implies that the fractions can 

be equalized by tit-for-tat players, although unconditional cooperation is still dominated by defection. 

Furthermore, we find that mutation among the strategies breaks the exact duality in such a way that 

cooperation is more favored than defection, as long as the cost-to-benefit ratio of cooperation is small. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Although a society consists of individuals, the collective inter- 

est is not an aggregate of individual ones. The prisoner’s dilemma 

(PD) game is a toy model to illustrate such a social dilemma. The 

PD game can be formulated as follows: Suppose that we have two 

players, say, Alice and Bob. When Alice cooperates, it benefits Bob 

by a certain amount of b at her own cost c . If she defects, on the 

other hand, it does not incur any cost and Bob gains nothing. If 

c exceeds b , defection obviously drives out cooperation, so we re- 

strict ourselves to 0 < c < b . The cost-to-benefit ratio, c / b , is thus 

limited to an open interval (0, 1). The resulting payoff matrix be- 

tween cooperation (C) and defection (D) is expressed as 

C D 

C 
D 

(
b − c −c 

b 0 

)
, 

(1) 

from the row-player Alice’s point of view, and the game is sym- 

metric to both players. The collective interest is maximized when 
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both choose C , but D is the rational choice for each individual, 

hence a dilemma. 

By construction of the PD game, unconditional defection (AllD) 

always constitutes a Nash equilibrium. However, it has been widely 

known by folk theorems that a cooperative strategy can also be 

rational if the PD game is repeated indefinitely with high enough 

probability because one’s cooperation can be reciprocated by the 

other’s in future. This is called direct reciprocity and has been 

popularized by Axelrod’s tournament of the iterated prisoner’s 

dilemma (IPD) ( Axelrod, 1984 ). We assume that the repetition 

probability approaches one. An archetypal strategy of direct reci- 

procity is Tit-for-tat (TFT). It begins with C at the first encounter 

and then replicates the co-player’s last move. Except the first 

round, therefore, it cooperates only if the co-player cooperated last 

time. We may call it a conditional cooperator, opposed to an un- 

conditional cooperator (AllC). We will explain that the interactions 

between the aforementioned strategies, i.e., AllD, TFT, and AllC, are 

rather subtle, indicating the complexity in evolution of coopera- 

tion. Earlier studies have already focused on the dynamics of these 

three representative strategies ( Brandt and Sigmund, 2006; Imhof, 

et al., 2005; Toupo et al., 2014 ). 

All these fall into a class of reactive strategies ( Baek et al., 2016 ) 

represented by a two-component array α = (P C , P D ) , where P C ( P D ) 
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means the probability to cooperate when the co-player cooper- 

ated (defected) last time. In this notation, we have AllC = (1, 

1), AllD = (0, 0), and TFT = (1, 0). If error occurs with prob- 

ability e at each time step, the effective behavior is described 

as α′ = ((1 − e ) P C + e (1 − P C ) , (1 − e ) P D + e (1 − P D )) = (P ′ C , P 
′ 
D ) . The 

error rate e is assumed to be small, and this statement will be 

made quantitative later. Suppose that two strategies α = (P C , P D ) 

and β = (Q C , Q D ) meet in the IPD. They effectively behave as α′ 
and β ′ , respectively, and stochastically visit four states, CC, CD, DC , 

and DD , where the former (latter) symbol means the move of the 

player adopting α ( β). The transition probabilities between the 

states can be arranged in the following matrix ( Nowak and Sig- 

mund, 1989, 1990 ): 

˜ M = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

P ′ C Q 

′ 
C P ′ D Q 

′ 
C P ′ C Q 

′ 
D P ′ D Q 

′ 
D 

P ′ C (1 − Q 

′ 
C ) P ′ D (1 − Q 

′ 
C ) P ′ C (1 − Q 

′ 
D ) P ′ D (1 − Q 

′ 
D ) 

(1 − P ′ C ) Q 

′ 
C (1 − P ′ D ) Q 

′ 
C (1 − P ′ C ) Q 

′ 
D (1 − P ′ D ) Q 

′ 
D 

(1 − P ′ C )(1 − Q 

′ 
C ) (1 − P ′ D )(1 − Q 

′ 
C ) (1 − P ′ C )(1 − Q 

′ 
D ) (1 − P ′ D )(1 − Q 

′ 
D ) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

. (2) 

This stochastic matrix is irreducible and positive definite, so the 

Perron–Frobenius theorem guarantees the existence of a unique 

right eigenvector �
 v = (v CC , v CD , v DC , v DD ) with the largest eigen- 

value � = 1 . If we normalize � v in such a way that v CC + v CD + v DC + 

v DD = 1 , it is the stationary probability distribution over the four 

states when the strategies α and β are adopted in the IPD. The 

long-term payoff of α against β per round is obtained by calculat- 

ing an inner product p αβ = 

�
 v ·� h 1 , where � h 1 = (b − c, −c, b, 0) . Like- 

wise, we obtain p βα = 

�
 v ·� h 2 with 

�
 h 2 = (b − c, b, −c, 0) . If we list 

the three strategies in the order of AllC, AllD, and TFT, the matrix 

˜ p = { p αβ} can be written as follows: 

˜ p = 

⎛ 

⎜ ⎝ 

(b − c)(1 − e ) be − c(1 − e ) b(1 − 2 e + 2 e 2 ) − c(1 − e ) 

b(1 − e ) − ce (b − c) e 2 b(1 − e ) e − ce 

b(1 − e ) − c(1 − 2 e + 2 e 2 ) be − 2 c(1 − e ) e (b − c) / 2 

⎞ 

⎟ ⎠ 

. (3) 

Note that the limit of e → 0 does not coincide with the case of 

e = 0 : If e was strictly zero between two TFT players, each of them 

would earn b − c at each round. For any e > 0, however, the aver- 

age payoff per round reduces to (b − c) / 2 as written in Eq. (3) . All 

these results are fully consistent with existing ones such as in Refs. 

Molander (1985) and Imhof et al. (2007) . 

In an evolutionary framework, we consider dynamics of a well- 

mixed population in which random pairs of individuals play the 

IPD game. Let us assume that the population is so large that 

stochastic fluctuations can be ignored. If a certain strategy earns 

a higher payoff than the population average, we can expect that 

its fraction will grow at a rate proportional to the payoff difference 

from the population average. Likewise, a strategy with a lower pay- 

off than the population average will decrease in its fraction. Repli- 

cator dynamics (RD) expresses this idea by using a set of determin- 

istic equations for the time evolution of the fractions. Let N s be 

the total number of strategies in the population. We have N s = 3 

in a set of the three strategies, i.e., {AllC, AllD, TFT}. We are inter- 

ested in the fraction x α of strategy α, with a normalization condi- 

tion that 
∑ 

α x α = 1 . The long-term payoff of strategy α from the 

whole population is denoted as 

p α = 

∑ 

β

p αβx β . (4) 

RD describes the time evolution of x α as follows: 

dx α

dt 
= 

∑ 

β

q αβ p βx β − 〈 p〉 x α, (5) 

where q αβ ’s are elements of a transition matrix between strate- 

gies. The average payoff of the population is denoted as 

〈 p〉 ≡ ∑ 

α p αx α = 

∑ 

αβ p αβx αx β . If we choose the transition matrix 

as 

q αβ = 

{
1 − μ for α = β
μ/ (N s − 1) for α � = β, 

(6) 

RD takes the following form: 

dx α

dt 
= (1 − μ) p αx α − 〈 p〉 x α + 

μ

N s − 1 

∑ 

β � = α
p βx β, (7) 

where μ is a mutation rate, assumed to satisfy μ	 e . The first 

term on the right-hand side means growth with a rate propor- 

tional to the payoff, the second term normalizes the total sum of 

x α ’s, and the last term describes mutation. Note that the fitness 

of strategy α is identified with its payoff p α( t ), so that it produces 

offspring in proportion to p α( t ) x α( t ) between time t and t + dt . The 

mutation structure in Eq. (6) means that some of these offspring 

are randomly picked up and change the strategy to one of the oth- 

ers. 

In this work, we will show the following: If μ vanishes, the 

time evolution of x AllC in RD is the same as that of x AllD under 

time reversal, t → −t, and vice versa. The duality does not exactly 

hold for μ> 0, and we will discuss its consequences by analyzing 

the system perturbatively. 

2. Fixed-point structure 

For the sake of notational convenience, we define x 1 ≡ x AllC , 

x 2 ≡ x AllD , and x 3 ≡ x TFT henceforth. Due to the normalization con- 

dition, we have only two independent variables, which we choose 

as x 1 and x 2 . Plugging Eq. (4) into Eq. (7) , we find a set of equa- 

tions, which can be formally written as follows: 

dx 1 
dt 

= f 1 (x 1 , x 2 ; e, μ) (8) 

dx 2 
dt 

= f 2 (x 1 , x 2 ; e, μ) . (9) 

After a little algebra, one can show that 

f 1 (x 1 , x 2 ; e, μ) + f 2 (x 2 , x 1 ; e, μ) = 

1 

2 

μ(b − c)(1 − 3 x 1 ) , (10) 

which becomes zero as μ vanishes. Note that x 1 and x 2 exchange 

their positions when they are arguments of f 2 in Eq. (10) . If we set 

μ = 0 and define τ ≡ −t, therefore, 

dx 1 
dτ

= −dx 1 
dt 

= − f 1 (x 1 , x 2 ; e, 0) = f 2 (x 2 , x 1 ; e, 0) (11) 

dx 2 
dτ

= −dx 2 
dt 

= − f 2 (x 1 , x 2 ; e, 0) = f 1 (x 2 , x 1 ; e, 0) (12) 
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