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a b s t r a c t 

We introduce a new model to describe diffusion processes within active deformable media. Our gen- 

eral theoretical framework is based on physical and mathematical considerations, and it suggests to em- 

ploy diffusion tensors directly influenced by the coupling with mechanical stress. The proposed gener- 

alised reaction-diffusion-mechanics model reveals that initially isotropic and homogeneous diffusion ten- 

sors turn into inhomogeneous and anisotropic quantities due to the intrinsic structure of the nonlinear 

coupling. We study the physical properties leading to these effects, and investigate mathematical con- 

ditions for its occurrence. Together, the mathematical model and the numerical results obtained using 

a mixed-primal finite element method, clearly support relevant consequences of stress-driven diffusion 

into anisotropy patterns, drifting, and conduction velocity of the resulting excitation waves. Our findings 

also indicate the applicability of this novel approach in the description of mechano-electric feedback in 

actively deforming bio-materials such as the cardiac tissue. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Excitable media, whether of biological type or not, represent 

complex nonlinear systems which are often of electrochemical na- 

ture, and can typically be coupled to several multi-physical fac- 

tors as heat transfer or solid and/or fluid mechanics. A remarkable 

example is the heart, where nonlinear bioelectrical waves propa- 

gate on a complex anatomical medium undergoing large mechani- 

cal deformations and facing strong interactions with biological flu- 

ids. More precisely, cardiac contraction results from the combina- 

tion of a complex emerging behaviour where subcellular ion dy- 

namics induce the overlapping of protein filaments, rapidly scal- 

ing up to both the cellular and tissue scales through a process 

known as excitation-contraction coupling and, as main topic of 

the present work, its reverse effect known as the mechano-electric 

feedback (MEF) ( Kaufmann and Theophile, 1967; Kohl and Sachs, 

2001 ). Studying the spatiotemporal dynamics of excitation waves 

in the heart is of paramount importance in the understanding of a 

large class of processes including depolarisation, repolarisation and 

period doubling bifurcations occurring in the transition towards 
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chaotic regimes (arrhythmias) ( Chen et al., 2017; Das et al., 2014; 

Tran et al., 2009 ). 

Still in the context of cardiac dynamics, a large number of ex- 

perimental data is available to describe ionic and electrophysi- 

ological processes at many spatio-temporal scales. However, due 

to diverse technical reasons, a common practice is to biochem- 

ically suppress any mechanical feedback to record these data, 

implying that any back-reacting effect intrinsically due to elec- 

tromechanical interactions is systematically neglected. Neverthe- 

less, the importance of understanding the interplay between the 

reaction-diffusion (RD) dynamics with mechanical deformation is 

quite clear, and a recent growing interest in refining a companion 

mathematical model for the dynamics of higher complexity models 

has been observed ( Quinn, 2014; 2015; Quinn et al., 2014; Ravelli, 

2003 ). Even though several subcellular contributors to cardiac MEF 

have been extensively studied (as for instance, stretch-activated ion 

channels ( Ward et al., 2008 )), their proper and consistent integra- 

tion into tissue-level models has remained a challenging task; fur- 

ther having a very limited clinically-translatable application and 

validation. 

In the last fifteen years, the relation between cell or tissue- 

based electrophysiology models with mechanical deformation 

of soft tissues has been formulated in terms of active stress 

( Nash and Panfilov, 2004 ), active strain ( Cherubini et al., 2008; 
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Gizzi et al., 2015; Nobile et al., 2012 ), with the addition of stretch- 

activated currents ( Panfilov and Keldermann, 2005; Panfilov et al., 

2007; Quinn and Kohl, 2013; Trayanova et al., 2011 ), or recently 

combined with either membrane capacitance changes ( De Oliveira 

et al., 2015 ), or with inertial effects ( SahliCostabal et al., 2017 ). 

However, in all of these works the key physical ingredient ruling 

the spatio-temporal dynamics of the membrane potential, i.e. the 

diffusion (in this context, the conductivity tensor), has been com- 

monly considered independent of mechanical deformation when 

related with the current configuration of the body. Even if general 

constitutive prescriptions suggesting a possible interaction were 

advanced ( Nash and Panfilov, 2004 ), the resulting MEF coupling 

due to the pull back operation has been confirmed to be rather 

small ( De Oliveira et al., 2013; Rossi et al., 2014; Sahli Costabal et al., 

2017; Whiteley et al., 2007 ) (which somewhat justifies the search 

for other means of describing MEF mechanisms). It is clear that 

further understanding in this regard is required, possibly using 

dedicated experimental approaches via fluorescence optical map- 

pings. However these techniques still require advancements of 

more sophisticate motion tracking algorithms. 

Processes related to MEF have a fundamental role in a wide va- 

riety of passive physical systems. Notable examples comprise cor- 

rosion ( Zheng et al., 2015 ), rock anisotropy ( Johnson and Rasolo- 

fosaon, 1996 ), glass transition ( Cohen, 1989 ), dissolution phenom- 

ena ( Miller-Chou and Koenig, 2002 ), electromigration ( Wang and 

Suo, 1997 ), hydrogen trapping ( Chêne, 2008 ), as well as swelling 

effects ( Hong et al., 2009 ). Clear evidence for the existence of such 

a coupling in biological systems has also been recently observed 

in strain-dependent oxygen diffusivity in cartilage ( Jackson et al., 

20 09; Yuan et al., 20 09 ), and in transcription factors within the 

cell nucleus ( Nava et al., 2016 ). Regarding the specific context of 

active biological media, connections forming gap junctions in car- 

diomyocytes (and associated to intercellular communication and 

mesoscale diffusion) have been recently discussed in terms of their 

mechano-sensitive properties ( Salamhe and Dhein, 2013 ). Further- 

more, a quantitative analysis on the specific effects of stretch into 

connexins in terms of hemichannels has been experimentally veri- 

fied in a number of different cellular preparations ( Bao et al., 2004; 

Cherian et al., 2005 ). 

In the perspective of the present work, an important number of 

experimental studies have demonstrated key MEF effects in ven- 

tricular myocardium and atrial tissue (see e.g. Quinn et al., 2014; 

Ravelli, 2003 for an extended review). Specific applications include 

atria arrhythmias, where basically three main results are available. 

First, the spatiotemporal distribution of atrial excitation depends 

strongly on the anatomical substrate ( Ravelli et al., 2005 ). Secondly, 

upon mechanical loading (stretching), the conduction velocity of 

the excitation wave decreases, a beat-to-beat interval variability 

appears, early afterdepolarisations, ectopic excitations and a higher 

vulnerability to atrial fibrillation are present ( Masé and Ravelli, 

2008 ). Third, atrial tissue undergoes multiple high frequency and 

unstable rotors (spiral waves) when subject to constant and vari- 

able stretch states ( Yamazaki et al., 2009 ). Experimental evidence 

of MEF has also been studied during ventricular loading, indicating 

a strong relationship between variations in the conduction veloc- 

ity and strain anisotropy ( De Oliveira et al., 2015; Franz et al., 1989; 

Lab, 1978; Mills et al., 2011 ). 

The fact that electrical properties of solids undergo intrinsic 

modifications due to (even infinitesimal) deformations has been a 

subject of study since several decades (see e.g. the classical vol- 

ume by Landau et al. on the electrodynamics of continuous media 

( Landau et al., 1984 , pp. 69)). These changes suggest the represen- 

tation of the corresponding models using strain-dependent (or also 

stress-dependent) dielectric tensors. In particular, this dependency 

in turn affects the electromagnetic dynamics by enforcing inhomo- 

geneous and anisotropic patterns in structures that were not nec- 

essarily so. Experimental evidence supports the main present as- 

sumption that electrical conductivity (hereafter referred as diffu- 

sion for the case at hand) depends on deformation. Therefore, and 

thanks to first principles, one can readily Taylor-expand a given dif- 

fusion tensor in terms of the deformation quantities. 

In this note we present a novel formulation for the descrip- 

tion of soft active deformable media within the context of cou- 

pled reaction-diffusion-mechanics systems, and employ nonlinear 

cardiac dynamics as a main motivating example. At this point we 

highlight that the concept of stress-assisted diffusion has been 

originally formulated for generalised composite media (see Aifantis, 

1980; Klepach and Zohdi, 2014; Miehe et al., 2014; Weitsman, 1987 

and the references therein), but many resemblances exist with re- 

spect to the active deformation of soft tissues ( De Vita et al., 2017 ). 

Most notably, here we have found that an anisotropic and inho- 

mogeneous diffusivity is naturally induced by mechanical defor- 

mations, thus affecting the nonlinear dynamics of the spatiotem- 

poral excitation wave. This important fact implies that the present 

formulation can recover and generalise a large class of electrome- 

chanical models based on basic FitzHugh-Nagumo-type descrip- 

tions ( Aliev and Panfilov, 1996; Panfilov and Keldermann, 2005 ). 

The most relevant additional parameters are here the weights ac- 

companying the stress when incorporated into the diffusion ten- 

sors, and therefore we study the plausibility of specific choices 

in the model parameter space. Our assessment is conducted for 

stretched tissues, focusing on appropriate physical indicators as 

conduction velocity, propagation patterns and spiral dynamics, and 

also carefully identifying conditions leading to the stability of the 

coupled system. 

2. A stress-assisted electromechanical model 

We centre our investigation on an active stress RD model de- 

scribing qualitative non-oscillatory properties of cardiac tissue sup- 

porting stable propagation of excitation waves ( Nash and Panfilov, 

20 04; Panfilov and Keldermann, 20 05 ). We frame our modelling 

into finite elasticity, where one identifies the relationship between 

material (reference) and spatial (deformed) coordinates, indicated 

by X I and x j , respectively, via the smooth map x j ( X I ) that deter- 

mines then the deformed position of a point x j originally located 

at X I . We indicate with J the Jacobian of the map. In the deformed 

configuration the proposed equations read: 

∂V 

∂t 
= 

∂ 

∂x i 
d i j (σi j ) 

∂V 

∂x j 
+ I ion , 

∂r 

∂t 
= f (V, r) , (2.1) 

∂T a 

∂t 
= ε(V )(k T a V − T a ) , 

∂σi j 

∂x i 
= 0 , (2.2) 

with constitutive prescriptions for the RD system ( Panfilov and Kel- 

dermann, 2005 ) 

I ion = −kV (V − a )(V − 1) − rV , (2.3a) 

f (V, r) = 

(
η + 

μ1 r 

μ2 + V 

)
( −r − kV (V − b − 1) ) , (2.3b) 

and for incompressible isotropic materials (J = 1) 

σi j = 2 c 1 b i j − 2 c 2 b 
−1 
i j 

− pδi j + T a δi j , (2.4) 

d i j (σi j ) = D 0 δi j + D 1 σi j + D 2 σik σk j . (2.5) 

Eq. (2.1) provides a non-dimensional, two-variables RD model 

where V represents the transmembrane potential and r is the re- 

covery variable, whose dynamics is prescribed by Eqs. (2.3) . The 

term kV (V − a )(V − 1) controls the fast processes regulated via the 
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