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A B S T R A C T

The tangled nature model of evolution (reviewed in the main text) is adapted for use in the study of antibody
resistance acquired by horizontal gene transfer. Exchanges of DNA and the acquisition of resistant gene
sequences are considered. For the parameters used, resistant strains rapidly proliferate and dominate, although
initial intense antibiotic treatment can occasionally prevent this. Variation in genome distribution appears to be
long tailed. If this is reflected in nature, the occurrence of resistant bacterial strains can be expected, as well as
considerable variation in patient outcomes.

1. Introduction

Bacteria are becoming immune to antibiotics. This is in the news-
papers,1 although it is hardly news, except for the details. There are
mathematical models of ways to administer antibiotics (e.g., Obolski
and Hadany, 2012; Sotto and Lavigne, 2012; Nguyen et al., 2014;
Ternent et al., 2015) but it is clear that if humanity is to have control
over infectious disease a better understanding of bacterial evolution is
needed. The most troubling aspect has been horizontal gene transfer
(e.g., Francino, 2012; Barlow et al., 2012 ; Berglund and Frank, 2012)
in which bacteria not only mutate but pass on entire genes (or more) to
other bacteria. In particular they can pass on the resistance to
particular antibiotics. (The literature is enormous, and the citations
listed are only a small fraction of those that address these problems.)

In general an antibiotic operates by disabling some vital process or
essential component of a bacterium. Resistance corresponds to finding
an alternative process or component. There are several mechanisms by
which such alternative routes can be found. The simplest (concep-
tually) is by mutation, including the presence of a mutant form already
in the population and selected by application of the antibiotic. Other
methods involve swapping or adding. One way this can happen is that a
piece of DNA from another bacterium may be acquired and provide the
immunity. Alternatively, the piece of DNA need not come from a living
bacterium, but is rather obtained from whatever medium the bacter-
ium finds itself in. The latter processes (i.e., other than mutation) are
known as horizontal gene transfer, abbreviated HGT.

In the present article we model the evolutionary processes behind a
bacterium's acquisition of resistance, both mutation and horizontal
gene transfer. The model—which we adapt to our present purposes—is

known as the “tangled nature model” (TNM) and has been used in
studies of evolution and ecology (Christensen et al., 2002; di Collobiano
et al., 2003; Jensen, 2004; Anderson and Jensen, 2005; Laird and
Jensen, 2006; Lawson et al., 2006; Lawson and Jensen, 2006; Jensen
and Arcaute, 2010; Becker and Sibani, 2014; Sevim and Rikvold, 2005;
Canko et al., 2015; Wosniack et al., 2017). In Section 2 we give an
introduction to the TNM; following that (Section 3) we describe our
adaptations, allowing it to model the development of antibody resis-
tance. For this purpose we have introduced a number of innovations,
the need for some of which has also come up in previous studies (e.g.,
Andersen and Sibani, 2016). In particular we introduce the following:
a) correlation of genotype and phenotype, expressed here as the
correlation of the preference matrix (to be called J) and the hamming
distance between genomes; b) enrichment of an environment for the
support of particular genomes; c) reduction in fertility of a replacement
genome. All these reflect biological realities. It will be seen that in
general our model does not yield one of the positive features of the
TNM, namely the emergence of punctuated equilibrium. This is
irrelevant in the present study. Our goal is not to model global
evolution, but rather a (literally) pathological situation. And finally
Section 3 also describes our specific steps in the modeling of horizontal
gene transfer. As will be seen, we do not model changes in genome size.
Once our procedures are described we are able to present, in Section 4,
the results of our investigations. The last Section 5 is a discussion of
strengths and weaknesses of our modeling.

2. The tangled nature model (TNM)

The evolution is an evolution of genomes. For each time step,
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individuals possessing a particular genome can reproduce, mutate or
die. Those genomes that are more successful have large populations
(many individuals with that genome), those that are less successful
have fewer or zero individuals possessing that genome. The determi-
nant of success or failure, and the principal factor deciding whether or
not reproduction takes place, is the preference matrix, J, which
measures the mutual compatibility of an existing population. It is fixed
for a given simulation. Here are the details.

A genome of length L is a string of L zeros and ones. For any given
genome (α) and at time-t, there is a certain number of individuals alive
who posses that genome, call this number n t( )α . The state of the system
is described by the set of integers, n t{ ( )}α . The genome α is assigned the
integer k α≡ 1 + ∑ 2α j j

L j− , so that k1 ≤ ≤ 2α
L (where αj is the j th

component of α). The total number alive at time-t is N t n t( ) ≡ ∑ ( )α α .
The procedure for going forward one time step varies slightly in the

literature. We adopt the following rules for asexual evolution.2

First, a living individual is randomly chosen (so if n n>β γ , it is more
likely that an individual with genome β is chosen). Suppose the genome
of the chosen individual is α. The first test to be applied is whether or
not to kill this individual. This is done with probability pkill. If the
individual is killed then n t n t( + 1) = ( ) − 1α α , and we move to the next
time step. If not, the individual is given the opportunity to reproduce.
This is where additional features of the model enter.

Governing the model is a matrix J that can be interpreted in various
ways. It measures the compatibility of pairs of genomes, their
preferences. We will take J−1 ≤ ≤ 1αβ where J > 0αβ implies that α is
more likely to reproduce if β is well populated. (There is a slight abuse
of terminology here: to say that α does something means that an
individual with genome α does it.) One might suppose that if α eats β
then J > 0αβ , while J < 0βα . This might or might not be true. It could
happen that α's predation has in fact a positive effect on β in (say)
culling herds and effectively improving the fitness of those that remain.
Thus J does not necessarily reflect the trophic food chain.

The matrix J is produced in the following way.3 Two sets of random
numbers are produced, fα and gα , uniformly distributed on the
interval [ − 1, + 1]. (Note that, e.g., fα can also be written as fkα

with
kα related to α as described above. Both notations are used.) Next, only
a (randomly selected) fraction θ of the fα are kept; the remainder are
set equal to zero. The matrix Jαβ is defined as

J f g≡ ,αβ α α β⊕ (1)

where “⊕” is the exclusive or, XOR, and α and β are length-L strings of

zeros and ones. Once determined, J is fixed for the entire simulation.
For the decision of whether or not to reproduce two more

parameters are needed, μ and c; μ is a kind of chemical potential and
c is effectively a normalization for J. Using them, as well as the state of
the system n t({ ( )})γ , one calculates

∑H
cN

J n N≡ 1 − μ .α
β

αβ β
(2)

Now finally we can state the reproduction decision: Given that an
individual with genome α has not been killed, it reproduces with
probability

p
H

= 1
1 + exp( − )α

reproduce (3)

At this point another possibility enters. The new individual is
allowed to be slightly different. There is a chance that an offspring can
differ from its progenitor. With probability pmutate each 0 or 1 can switch.
(It is reasonable to take p L= const/mutate so that the overall probability
of mutation is roughly the same as the size of the genome changes.)

Those are the rules for asexual reproduction in the TNM. With the
right parameter values one obtains punctuated equilibrium as emer-
gent with no need for significant external events, like the asteroid that
supposedly killed the dinosaurs. Many other studies have been based
on this model, including the introduction of additional features, such as
spatial dependence. Typical results of using this model are shown in
Fig. 1, although in some of the cited articles much longer runs as well
as larger L values are used.

2.1. Elephants do not become giraffes: the correlation of phenotype
and genotype

This model will ultimately be adapted to study horizontal gene
transfer, but first we consider a modification that is also suitable for the
original TNM model. Adaptations of this sort have been considered
elsewhere (Andersen and Sibani, 2016), but we use a different method.

The problem addressed is that the rule for mutation given above
takes no account of phenotype. The latter is implicit in the preference
(J) matrix, but mutations (i.e., exchanges 0 ↔ 1) bear no a priori
relation to J. What is wanted is a correlation between the phenotype
and possible mutations, whose likelihood is determined by the ham-
ming distance between genomes.4

To create this correlation we employed a random process. The idea
is to pick two pairs. The pair with the greater hamming distance is
given the smaller (algebraically) J-value. Specifically, define D k k( , )α β to
be the hamming distance between sequences α and β. Now pick 4
random integers between 1 and 2L (say n n, …,1 4) and examine
D n n( , )1 2 , D n n( , )3 4 , J n n( , )1 2 and J n n( , )3 4 . If D n n D n n( , ) < ( , )1 2 3 4 , and
J n n J n n( , ) < ( , )1 2 3 4 then there would be improved correlation if the J
values were switched, that is J n n J n n( , ) ↔ ( , )1 2 3 4 . In words, satisfying
the inequality in D implies that n1 and n2 are more nearly alike than n3
and n4. Therefore J n n( , )1 2 should be larger than J n n( , )3 4 . By doing this
random process for a reasonable number of times a correlation can be
established. It was found that for M × 2L attempts, with M ∼ 1000, one
could obtain good results. For large L this procedure could be done on
the fly as new matrix elements of J are encountered, although for the
small values of L that we used this was not a problem. This process may
change the number of zero elements in J, but insignificantly.

3. Adapting the model to study antibody resistance

All the genomes represent bacteria and those with a certain
signature (subsequence) are the ones killed by the antibiotic. Not all

Fig. 1. The figure shows which genomes have at least one individual alive at the
indicated time. Time, the horizontal axis, is measured in generations, while the vertical
axis is the number, kα, associated with genome-α. The parameters for this run are L=8,
p = 0.097kill , p L= 0.552/mutate , μ = 0.22, c=0.0166. One generation, defined as, N p〈 〉/ kill,

is 479 time steps.

2 Regarding many details we differ from the formulations in other articles. Notation
can differ (our α is often called a), rules for constructing J can differ, as can the rules for
mutation. However, the qualitative results are unchanged

3 Our method is closest to that in Hall et al. (2002).

4 The hamming distance between two sequences of zeros and ones is the minimum
number of changes to bring one sequence to be equal to the other.
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