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a b s t r a c t 

The complexity of the anaerobic digestion process has motivated the development of complex models, 

such as the widely used Anaerobic Digestion Model No. 1. However, this complexity makes it intractable 

to identify the stability profile coupled to the asymptotic behaviour of existing steady-states as a function 

of conventional chemostat operating parameters (substrate inflow concentration and dilution rate). In a 

previous study this model was simplified and reduced to its very backbone to describe a three-tiered 

chlorophenol mineralising food-web, with its stability analysed numerically using consensus values for 

the various biological parameters of the Monod growth functions. Steady-states where all organisms ex- 

ist were always stable and non-oscillatory. Here we investigate a generalised form of this three-tiered 

food-web, whose kinetics do not rely on the specific kinetics of Monod form. The results are valid for a 

large class of growth kinetics as long as they keep the signs of their derivatives. We examine the exis- 

tence and stability of the identified steady-states and find that, without a maintenance term, the stability 

of the system may be characterised analytically. These findings permit a better understanding of the op- 

erating region of the bifurcation diagram where all organisms exist, and its dependence on the biological 

parameters of the model. For the previously studied Monod kinetics, we identify four interesting cases 

that show this dependence of the operating diagram with respect to the biological parameters. When 

maintenance is included, it is necessary to perform numerical analysis. In both cases we verify the dis- 

covery of two important phenomena; i) the washout steady-state is always stable, and ii) a switch in 

dominance between two organisms competing for hydrogen results in the system becoming unstable and 

a loss in viability. We show that our approach results in the discovery of an unstable operating region in 

its positive steady-state, where all three organisms exist, a fact that has not been reported in a previous 

numerical study. This type of analysis can be used to determine critical behaviour in microbial commu- 

nities in response to changing operating conditions. 

© 2017 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

The mathematical modelling of engineered biological systems 

has entered a new era in recent years with the expansion and stan- 

dardisation of existing models aimed at collating disparate com- 

ponents of these processes and provide scientists, engineers and 

practitioners with the tools to better predict, control and optimise 

them [23] . In engineered biological systems, mechanistic modelling 

reached consensus with the development of the Activated Sludge 

Models [9,10] for wastewater treatment processes, followed by the 

Anaerobic Digestion Model No. 1 (ADM1) [12] a few years later. 

The development of ADM1 was enabled largely due to the possibil- 

ities for better identification and characterisation of functional mi- 
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crobial groups responsible for the chemical transformations within 

anaerobic digesters. It describes a set of stoichiometric and kinetic 

functions representing the standard anaerobic processes, remaining 

the scientific benchmark to the present day. However, there has 

been a growing awareness that the model should take advantage 

of improved empirical understanding and extension of biochemi- 

cal processes included in its structure, to acquire a better trade-off

between model realism and complexity [13] . 

The full ADM1 model is highly parameterised with a large num- 

ber of physical, chemical and biological processes described by nu- 

merous state variables and algebraic expressions. Whilst suitable 

for dynamic simulation, more rigorous mathematical analysis of 

the model is difficult. To the authors knowledge, only numerical 

investigations are available [3] . Due to the analytical intractability 

of the full ADM1, work has been made towards the construction of 

simpler models that preserve biological meaning whilst reducing 
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Fig. 1. Schematic of the three-tier chlorophenol mineralising food-web indicating the flow and conversion of chemical substrates and products in the system. 

the computational effort required to find mathematical solutions 

of the model equations [7,8] . 

The most common models used to describe microbial systems 

are two-tiered models, which take the form of a cascade of two 

biological reactions where one substrate is consumed by one mi- 

croorganism to produce a product that serves as the main limit- 

ing substrate for a second microorganism. When the second organ- 

ism has no feedback on the first organism, the system is known 

as commensalistic [16,20] . The system has a cascade structure 

and the number of steady-states and their (mathematical) sta- 

bility as a function of model inputs and parameters may be in- 

vestigated [1,2,19] . When the growth of the first organism is af- 

fected by the substrate produced by the second organism the sys- 

tem is known as syntrophic. For instance, if the first organism 

is inhibited by high concentrations of the product, the extent to 

which the first substrate is degraded by the first organism de- 

pends on the efficiency of the removal of the product by the sec- 

ond organism. The mathematical analysis of such a model is more 

delicate than for commensalistic models, (see for instance early 

work by [4,14,15,27] and the more recent papers [5,11,17,18,22] ). 

An important and interesting extension should be mentioned here: 

[25,26] analysed an 8-dimensional mathematical model, which in- 

cludes syntrophy and inhibition, both mechanisms considered by 

[2] and [6] . 

As an example of this for anaerobic digestion, a previous study 

investigated the effect of maintenance on the stability of a two- 

tiered ‘food-chain’ comprising two species and two substrates [28] . 

Maintenance is defined as the energy consumed by an organ- 

ism that is used for all biological processes other than growth. In 

[28] and here, it is analogous to a first-order decay rate constant, 

or biomass death term. Although the authors were not able to de- 

termine the general conditions under which this four dimensional 

syntrophic consortium was stable, further work has shown that a 

model with generality can be used to answer the question posed, 

determining that the two-tiered food-chain is always stable when 

maintenance is included [18] . 

More recently, the model described by [28] was extended by 

the addition of a third organism and substrate to create a three- 

tiered ‘food-web’ [24] , as shown in Fig. 1 . In this paper, the exis- 

tence and stability of the steady-states were determined only nu- 

merically. Although the results were important in revealing emer- 

gent properties of this extended model, the motivation of this work 

is to give an analytical study of the model. Moreover, our analy- 

sis does not require that growth functions are of the specific form 

considered and are valid for a large class of growth functions. This 

is critical as it provides the means by which microbiologists can 

theoretically test the influence of the growth characteristics of or- 

ganisms on the properties of the system and the interactions be- 

tween multiple species. 

Here, we pursue a generalised description and analysis of the 

model given by [24] . Chlorophenols are chemicals of importance 

due to their impact on the environment and to public health, their 

recalcitrance in food-webs and resistance to aerobic biodegrada- 

tion via the oxygenase enzyme [21] . Although we consider the 

monochlorophenol isomer here, extension to multiple isomeric 

chlorophenols would be straightforward. It is important to note 

that, although the particular biological transformation provided is 

for chlorophenol mineralisation, the structure and methods em- 

ployed are much more general and apply to any theoretical eco- 

logical interactions that may be hypothesised or observed in a mi- 

crobial community. We therefore stress that this work can provide 

a good approach for analytically investigating the behaviour of mi- 

crobial food-webs where numerical parameters are difficult to ob- 

tain or uncertain. Ultimately, we demonstrate here the advantage 

of a generalised approach for mathematical analysis of microbial 

ecological interactions from both a theoretical perspective and its 

potential if providing knowledge in applied research where these 

communities and processes are studied empirically. 

The paper is organised as follows. In Section 2 , we present 

a description of the model to be investigated, and its reduction 

in Section 3 . Model assumptions and notations are provided in 

Section 4 . In Section 5 we demonstrate the existence of the three 

steady-states and define four interesting cases for specific parame- 

ter values that are investigated using the solutions, whilst also in- 

dicating the regions of existence of the steady-states for the op- 

erating parameter values. We present results on the behaviour of 

the system whilst varying two control parameters in Section 6 . In 

Section 7 we perform local stability analysis of the steady-states 

without maintenance and, in Section 8 , we undertake a compre- 

hensive numerical stability analysis of the four cases for both the 

model with and without maintenance. We show that our approach 

leads to the discovery of five operating regions in which one leads 

to the possibility of instability of the positive steady-state, where 

all three organisms exist, a fact that has not been reported by 

[24] . Indeed, we suggest that a stable limit-cycle can occur at the 

boundary with this region. Finally, in Section 9 , we make comment 

on the role of the kinetic parameters used in the four example 

cases, in maintaining stability, which points to the importance of 

the relative aptitude of the two hydrogen consumers in sustaining 

a viable chlorophenol mineralising community. In the Appendix we 

describe the numerical method used in Section 8 , give the assump- 

tions on the growth functions we used and the proofs of the re- 

sults. 

2. The model 

The model developed in [24] has six components, three sub- 

strate (chlorophenol, phenol and hydrogen) and three biomass 

(chlorophenol and phenol degraders, and a hydrogenotrophic 

methanogen) variables. The substrate and biomass concentrations 

evolve according to the six-dimensional dynamical of ODEs: 

d X ch 

d t 
= −DX ch + Y ch f 0 ( S ch , S H 2 ) X ch − k dec , ch X ch (1) 

d X ph 

d t 
= −DX ph + Y ph f 1 

(
S ph , S H 2 

)
X ph − k dec , ph X ph (2) 
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