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a b s t r a c t 

In this note, we present a simple mathematical model of drug delivery through transdermal patches by 

introducing a memory formalism in the classical Fick diffusion equation based on the fractional deriva- 

tive. This approach is developed in the case of a medicated adhesive patch placed on the skin to deliver 

a time released dose of medication through the skin towards the bloodstream. 

The main resistance to drug transport across the skin resides in the diffusion through its outermost 

layer (the stratum corneum). Due to the complicated architecture of this region, a model based on a con- 

stant diffusivity in a steady-state condition results in too simplistic assumptions and more refined models 

are required. 

The introduction of a memory formalism in the diffusion process, where diffusion parameters depend 

at a certain time or position on what happens at preceeding times, meets this requirement and allows a 

significantly better description of the experimental results. 

The present model may be useful not only for analyzing the rate of skin permeation but also for pre- 

dicting the drug concentration after transdermal drug delivery depending on the diffusion characteristics 

of the patch (its thickness and pseudo-diffusion coefficient). 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Transdermal patches are pharmaceutical devices of varying 

sizes, containing, one or more active drugs, intended to be applied 

to the unbroken skin in order to deliver the active ingredient to 

the systemic circulation after passing through the skin barriers. In 

this way, through a simple diffusion process, the drug enters the 

bloodstream directly through the skin. 

In principle, the transdermal penetration of drugs, or more gen- 

erally of hydrophilic (or even hydrophobic) solutes, trough intact 

human skin can be modeled, from a theoretical point of view, as 

a process of molecular diffusion through a composite multilayer 

membrane whose main barrier to transport is localized within the 

stratum corneum [SC]. This layer is composed by flattened dead 

cells (corneocytes) embedded in a matrix of staked lipid lamellae 

composed by free fatty acids, ceramides and cholesterol. Because 

of its very complex structure, the mechanism by which solutes 

crosses human skin is not completely well characterized. 

In the classical diffusion problems, when the mean squared dis- 

placement of the diffusing objects is proportional to time (ran- 
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dom walk process), the overall diffusion mechanism is described 

by Fick’s law. Recently, Jepps at al. [1] have reviewed the status-of- 

art of skin transport modeling, taking into account the different 

structures involved, and different more or less sophisticated ap- 

proaches have been proposed, all of them based on the classical 

diffusion equations with classical diffusion coefficients. 

However, this is not always appropriate and in many highly het- 

erogeneous media, as for example biological systems are, there is 

strong experimental evidence that deviations from the classical be- 

havior have been observed, and diffusion processes are governed 

by a memory effect . 

For example, in many biological systems, the state of whichever 

drug during the diffusion process in the tissue, due to the com- 

plex architectural structure of the medium it crosses, depends on 

its state at a previous time. Since fractional derivatives take into 

account all values of a function in a time interval in which a pro- 

cess that is analyzed takes place (fractional derivatives take history 

of a process into account), it may be convenient the use of deriva- 

tives of positive real order which allow to take history of a process 

into account. 

Recently, many contributions appeared concerning the diffusion 

of different substances, mainly drugs, across differently structured 
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porous materials using fractional calculus with the attempt to give 

a better description of the phenomenon in different fields [2] . 

Typical examples of the use of fractal derivatives can be found 

in physics and mathematics [3–7] , in pharmaco-kinetics [8,9] , in 

bioengineering [10,11] , in geophysics [12–14] and in relaxation in 

filled polymers [15] . In particular, various aspects of transdermal 

delivery have been recently reviewed in the light of classical mod- 

els of drug diffusion in the skin [16–18] and different models of 

skin permeability have been proposed [19–21] . 

On the other side, memory formalism has been successfully 

applied to the diffusion processes of a model compound (4- 

cyanophenol in saturated aqueous solution) and to a nonsteroidal 

anti-inflammatory drug (piroxicam) through the skin [22] , where 

it has heen shown that the introduction of the fractional derivative 

offers a better description of the diffusion processes in the stratum 

corneum in comparison to other classical models. 

In this note, we deal with a simple mathematical model based 

on diffusion with memory to take into account the process where 

a specific dose of medication is delivered from a medicated ad- 

hesive patch placed on the skin through the stratum corneum into 

the bloodstream. The present approach differs from analogous ones 

we have already proposed [23–26] . In fact, in this note, we dis- 

cuss the diffusion of a generic drug through two contiguous lay- 

ers, i.e., from a saturated layer of a finite thickness to an adjacent 

half-space region initially free of drug, making use of continuity 

conditions which imply the continuity of the flux at the patch-skin 

interface. This approach allows a rather realistic description from 

a macroscopic point of view of the transport of drug through the 

model system employed and furnishes suggestions on the patch 

architecture in order to gain the desired effects. 

2. The diffusion model: extension of the classical Fickian 

model 

We write the diffusion equations, as today is usually done, by 

substituting the gradient of concentration p x ( x, t ) with its fractional 

derivative D 

( ν) p x ( x, t ) of order ν in order to represent the inherent 

delay of the diffusion mechanisms in highly heterogeneous media. 

The fractional derivative D 

ν f ( x, t ) of order ν , known as the Ca- 

puto fractional derivative, is defined as [6,27] 

D 

ν f (x, t) = 

1 

�(1 − ν) 

∫ t 

0 

1 

( t − τ ) ν
[ 
∂ f ( x, t) 

∂t 
] t= τ dτ (1) 

with 0 < ν < 1 and �( x ) the Euler Gamma function. 

The physical meaning of the fractional derivative in this con- 

text resides in the fact that the memory function captures the 

past. What the fractional derivative memory function is remem- 

bering is the past values of the function, which implies that the 

function is constructed by adding to the initial value the succes- 

sive weighted increments over time. The increments per unit time 

are represented by the first order derivative under the integral sign 

and the weights are represented by the factor of the first order 

derivative in Eq. (1) which are decreasing with increasing time sep- 

aration from the time t . Thus, a variable’s value is a weighted mean 

of its past values. 

The equations involved in the study of diffusion are the consti- 

tutive diffusion equations with memory formalism. They read 

q (x, t) = −dD 

ν ( 
∂ 

∂x 
[ p(x, t)]) (2) 

∂ 

∂x 
[ q (x, t)] + 

∂ 

∂t 
[ p(x, t)] = 0 (3) 

where q ( x, t ) is the flux, p ( x, t ) the concentration at position x and 

time t within the medium and d is the pseudo-diffusion coefficient 

(with memory). Eqs. (2) and (3) represent a generalization of the 

Fick’s laws with the introduction of the memory formalism, work- 

ing through the fractional derivative. 

Solution of Eqs. (2) and (3) can be found, in this context, in the 

Laplace domain taking advantage of the property of the Laplace 

transform that converts time derivatives into algebraic functions 

of position and a variable s , thereby reducing the partial differen- 

tial diffusion equation into an ordinary differential equation that is 

much easier to solve. 

Taking the Laplace Transform [LT] of Eqs. (2) and (3) and using 

capital letters to define the LT of the corresponding lower case let- 

ter, i.e., Q(x, s ) = LT [ q (x, t)] and P (x, s ) = LT [ p(x, t)] , we obtain the 

following equation 

P xx (x, s ) = GP (x, s ) − s −ν

d 
p(x, 0) (4) 

with 

G = 

s 1 −ν

d 
(5) 

Here, the subscript x indicates the order of the derivative with re- 

spect to the variable x . 

The formal solution of Eq. (4) is given by 

P (x, s ) = 

p(x, 0) 

s 
+ A (s ) exp ( 

√ 

G x ) + B (s ) exp (−
√ 

G x ) (6) 

where A ( s ) and B ( s ) are arbitrary functions depending on the vari- 

able s to be used to satisfy the boundary conditions of the partic- 

ular problem under investigation. 

The flux Q ( x, s ) is given, according to Eq. (2) by 

Q(x, s ) = −ds νP x (x, s ) 

= −
√ 

d s 
1+ ν

2 

(
A (s ) exp ( 

√ 

G x ) − B (s ) exp (−
√ 

G x ) 
)

(7) 

with the condition 

d 

dx 
(p(x, 0)) = 0 (8) 

3. Equations governing the diffusion with memory formalism 

We model the diffusion of drugs from a transdermal patch (a 

plaster) to the body considering a porous layer saturated with the 

drug at a given initial concentration C 0 in contact with a particular 

region of the body where the diffusion process is expected. We will 

model this region as a permeable half space. 

Initially, the layer is saturated with the drug, while the half 

space medium is assumed free of drug. With this initial condition, 

the drug will flow from the layer into the half-space and the prob- 

lem is to find the concentration and the flux of drug at any point 

within both media (layer and half space) as a function of time. We 

will also require that at t > 0 there will be continuity in the con- 

centration and flux across the plane x = 0 separating the two media. 

A sketch of the model under consideration is shown in Fig. 1 . 

3.1. Diffusion in the layer and the appropriate boundary conditions 

We will apply the above stated diffusion mechanism in the re- 

gion −h ≤ x ≤ 0 which characterizes the layer of thickness h (see 

Fig. 1 ). In order to specify that we will consider here the layer, we 

will add the suffix “0” to each symbol. A list of the symbols em- 

ployed is given in Table 1 . 
In the Laplace domain, the boundary condition q 0 (−h, t)= 0, 

i.e., the absence of flux at the outer boundary of the layer, reads 
Q 0 (−h, s )= 0, yielding 

Q 0 (−h, s ) = −
√ 

d s 
1+ ν

2 

(
A 0 (s ) exp (−

√ 

G 0 h ) − B 0 (s ) exp ( 
√ 

G 0 h ) 
)

= 0 

(9) 
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