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a b s t r a c t 

A theoretical model of time-dependent peristaltic viscous fluid flow through a curved channel in the 

presence of an applied magnetic field is investigated. The results for stream function, pressure distribu- 

tion and mechanical efficiency are obtained under the assumptions of long wavelength and low Reynolds 

number approximation. Pressure fluctuations due to an integral and a non-integral number of waves 

along the channel length are discussed under influence of channel curvature and magnetic parameter. 

Two inherent characteristics of peristaltic flow regimes (trapping and reflux) are discussed numerically. 

The mechanical efficiency of curved magnetohydrodynamic peristaltic pumping is also examined. The 

magnitude of pressure increases with an increasing channel curvature and magnetic parameter. Reflex 

phenomenon is analyzed in the Lagrangian frame of reference. It is observed that reflex in the curved 

channel is higher than in the straight channel. The trapped fluid in a curved channel is studied in the 

Eulerian frame of reference and it contains two asymmetric boluses. The size of the lower bolus grows 

and the upper bolus decreases with increasing effect of magnetic strength. Pumping efficiency of the peri- 

staltic pump is low for curved channel flow than for straight channel flow. Also, the pumping efficiency 

is comparatively low at the high effect of the magnetic parameter. 

© 2017 Published by Elsevier Inc. 

1. Introduction 

The fluid mechanics of peristaltic flow has been studied for 

many years by many researchers because of its practical im- 

portance in physiology and industry. Several mathematical and 

experimental models have been developed to understand the 

fluid mechanical aspects of peristaltic motion. The mathemati- 

cal models obtained by a train of waves in an infinitely long 

two-dimensional symmetric and/or asymmetric ducts containing 

a Newtonian and/or non-Newtonian fluid have been investigated 

by many researchers. Shapiro et al. [1] studied peristaltic trans- 

port using wave frame of reference under long wavelength approx- 

imation. Takabatake et al. [2] investigated two-dimensional peri- 

staltic flow in a channel using finite-difference technique employ- 

ing the upwind successive-over-relaxation method. The boundary 

element method was successfully employed by Pozrikidis [3] to 

study Stokes flow model of peristalsis. Rathish et al. [4] developed 

a stream function-vorticity ( ψ − ω) formulation of peristaltic flow 

in a two-dimensional channel. Peristaltic motion in two immiscible 

layers of fluid has been studied for Newtonian model by Brasseur 
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et al. [5] , and for non-Newtonian models by Prasad et al. [6,7] . 

Li and Brasseur [8] presented non-steady peristaltic transport of 

food bolus of Newtonian type in the esophagus by considering fi- 

nite length tube based on lubrication theory. Eytan et al. [9] devel- 

oped a Stokes flow model in a two dimensional peristaltic channel 

to simulate intra-uterine fluid motion in a sagittal cross section of 

uterus. Tripathi et al. [10] studied unsteady peristaltic motion of 

MHD non-Newtonian fluid (Jeffrey model) in a finite length cylin- 

drical tube. Some of studies undertaken by Tripathi and cowork- 

ers address peristaltic transport of different fractional viscoelastic 

models to simulate chem movement in intestine [11–13] . In recent 

studies, Bandopadhyay et al. [14] presented peristaltic analysis by 

considering applied electric field in microfluidic channels. Tripathi 

et al. [15] extended this model by considering external magnetic 

field. In another work Tripathi et al. [16] developed a mathemat- 

ical model to study viscoelastic physiological fluids through capil- 

lary altered by electroosmosis. 

The study of fluid mechanics of biological fluids in the presence 

of magnetic field (Biomagnetic Fluid Dynamics) is a major area of 

interest for researchers. Some of the applications of magnetic fields 

in physiology are magnetotherapy, magnetic resonance imaging, 

magnetic devices and targeted drug delivery systems in the treat- 

ment of cancer. In view of such wide ranging applications, several 
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authors have investigated magnetic field effects for different fluid 

models. The classical work of Haik et al. [17] initiated a mathe- 

matical formulation for bio-magnetic fluid flow by considering the 

fluids are electrically poor conductors and the flow is affected only 

by the magnetization of the fluid. The model was extended by Pa- 

padopoulos et al. [18] to reflect the curved square ducts of bio- 

magnetic flow. Tzirtzilakis [19,20] improved this model by incor- 

porating both magnetization and electrical conductivity of the bio- 

fluid. In the context of peristalsis, several authors have investigated 

an applied magnetic field effects for different fluid flow models to 

describe fluid flow undergoing peristalsis with prescribed wall mo- 

tions [21–25] . There have been a couple of investigations of peri- 

staltic flow in curved channels. Sato et al. [26] developed a flow 

model in a two-dimensional curved channel undergoing peristalsis 

when the wave length is sufficiently long compared with channel 

width and the inertial effect is negligibly small. Subsequent stud- 

ies based on this framework has been extended for many prob- 

lems including heat transfer analysis, non-Newtonian fluid, mag- 

netic effect and nano-fluids [27–36] . Tripathi et al. [37] investi- 

gated both analytically and computationally the peristaltic trans- 

port of Nakamura-Sawada bi-viscosity non-Newtonian fluid in a 

curved tube. All these studies in curved channels of peristaltic 

transport of Newtonian/non-Newtonian fluids have analyzed the 

problem in Eulerian frame of reference by neglecting the local dy- 

namics such as spatial-temporal variations. Ramanamurthy et al. 

[38] have examined unsteady peristaltic flow dynamics in curved 

channels. 

The aim of the present work is to discuss the time-dependent 

flow dynamics of MHD fluid in a curved channel driven by peri- 

stalsis. This model is based on the long wave length and low 

Reynolds number flow approximation but the solution procedure 

is time-dependent where the time is introduced through the wall 

motility at the boundaries. The model is applicable to transport of 

chyme in the intestine, blood flow through aorta and a roller blood 

pump. The problem is first modeled and then solved analytically 

for stream function. Pressure variations has been plotted for inte- 

gral and non-integral of waves along the channel walls. Trapping, 

reflex and pumping efficiency are discussed. The effects of mag- 

netic and curvature parameter on the characteristics of the result- 

ing flow field are analyzed. 

2. Mathematical model 

The incompressibility condition and momentum equation for 

MHD fluid are, respectively, written as, 

∇ · V = 0 , (1) 

∂V 

∂t 
− V × (∇ × V ) + 

1 

2 

∇(| V | ) 

= − 1 

ρ
∇p − ν(∇ × ∇ × V ) + (J × B ) . (2) 

In the above equations, V is the velocity vector, ρ is the fluid den- 

sity, ν is the kinematic viscosity, J is the current density, B is the 

applied magnetic field. The cartesian co-ordinate system ( X 

′ , Y ′ , Z ′ ) 
is related to the toroidal co-ordinate system ( x, r, z ) by the rela- 

tions 

X 

′ = (R + r) cos (x/R ) , Y ′ = (R + r) sin (x/R ) , Z ′ = z. (3) 

Consider a two-dimensional flow of an incompressible viscous 

fluid in a curved channel of width 2 a coiled in a circle with center 

O and radius R . There is no component in z direction. An external 

magnetic field of strength B is applied in radial direction as shown 

in Fig. 1 . The fluid-wall interface is time-dependent and is given as 

Fig. 1. Schematic view of peristaltic wave in curved channel. 

follows: 

r = ±h (x, t) = ±a ± b cos 

[ 
2 π

λ

(
x − ct 

)] 
. (4) 

Here, x is the axial distance, a is the radius of the stationary curved 

channel, b is the wave amplitude, λ is the wave length, t is the 

time, c is the velocity of the wave, and h is the radial displacement 

of the wave from the centerline. 

Neglecting the displacement currents, the Maxwell equations 

and the generalized Ohm law are 

∇ · B = 0 , ∇ × B = μm 

J , ∇ × E = 0 , J = σe (E + V × B ) , (5) 

where, μm 

is the magnetic permeability, E is the electric field and 

σ e is the electric conductivity. 

The following assumptions are applied: 

• The quantities ρ , μm 

and σ e are all constant throughout the 

flow. 
• The applied magnetic field B is varying inversely with radial 

distance as B r = 

B 0 
r+ R ̂  e , in which B 0 is the magnitude of B and 

R is radius of the curved channel. 
• The magnetic Reynolds number is sufficiently small, hence the 

induced magnetic field is negligible compared with the im- 

posed magnetic field. 
• The electrical field E is assumed to be zero. 

Based on the above assumptions, the electromagnetic body 

force (Lorentz force) involved in Eq. (1) can be obtained as 

J × B = σe (V × B ) × B = σe [(V · B ) B − (B · B ) V ] 

= −σe 

(
B 0 

r + R 

)2 

u ̂

 e x . (6) 

In view of the above Eqs. (1) - (6) , the governing equations for MHD 

incompressible viscous fluid flow are given as: 

R 

∂u 

∂x 
+ 

∂ 

∂r 
{ (r + R ) v } = 0 , (7) 

∂u 

∂t 
+ 

Ru 

(r + R ) 

∂u 

∂x 
+ v 

∂u 

∂r 
+ 

u v 
r + R 

= − R 

ρ(r + R ) 

∂ p 

∂x 

+ ν

[(
R 

r + R 

)2 ∂ 2 u 

∂x 2 
+ 

1 

r + R 

∂u 

∂r 
+ 

∂ 2 u 

∂r 2 
− u 

(r + R ) 2 
+ 

2 R 

(r + R ) 2 
∂v 
∂x 

]

−σe 

(
B 0 

r + R 

)2 

u, (8) 

∂v 
∂t 

+ 

Ru 

(r + R ) 

∂v 
∂x 

+ v 
∂v 
∂r 

− u 

2 

r + R 

= − 1 

ρ

∂ p 

∂r 
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