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a b s t r a c t 

Motivated by important ecological applications we study how noise can reduce a number of trophic lev- 

els in hierarchically related multidimensional population systems. A nonlinear model with three trophic 

levels under the influence of external stochastic forcing is considered as a basic conceptual example. 

We analyze a probabilistic mechanism of noise-induced extinction of separate populations in this “prey- 

predator-top predator” system. We propose a new general mathematical approach for the estimation of 

the proximity of equilibrium regimes of this stochastic model to hazardous borders where abrupt changes 

in dynamics of ecological systems can occur. Our method is based on the stochastic sensitivity function 

technique and visualization method of confidence domains. Constructive abilities of this mathematical 

approach are demonstrated in the analysis of different scenaria of noise-induced reducing of the number 

of trophic levels. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Currently, in the ecology, one can observe a distinct trend of 

the transition from the study of individual isolated communities 

to the study of highly organized hierarchically related population 

systems [10] . It is well-known that reducing the number of trophic 

levels, or removing predator species, implies a biodiversity loss, 

and as a consequence, abrupt shifts in ecosystem-level processes 

[15,32,33,35] . To understand the internal mechanisms of such shifts 

observed in the real nature, it is necessary to take into account the 

relationships between interacting populations, the interspecies and 

age diversity, multi-level food chains, etc. In such systems, often 

even small quantitative changes in one hierarchical level can cause 

radical changes in the subsystems located on other levels of hier- 

archy. The mathematical description of such complex ecosystems 

leads to the necessity to develop methods for analyzing nonlinear 

dynamic models of high dimension [11,24] . A transition to multi- 

dimensional models essentially complicates this analysis. Indeed, 

even in three-dimensional models, along with well-studied equi- 

libria and periodic regimes, quasi-periodic and chaotic dynamics 

can be observed [12,14,21] . 

Now, in the study of ecological systems, it is generally accepted 

to take into account the impact of unavoidable random pertur- 
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bations [2,5,13,25,26] . In nonlinear systems, even small noise can 

cause unexpected stochastic phenomena: noise-induced transitions 

[6,23,30] , stochastic resonance [17,28] , noise-induced chaos [9,18] . 

In models of interacting populations, random disturbances can 

transform system from persistence to extinction [1,3,4,22,29,31] . 

Until now, a direct numerical simulation of random trajectories is a 

main tool in the study of stochastic effects in population systems. 

In parametric analysis, this method is extremely time-consuming. 

In the investigations of stochastic nonlinear dynamics, analytical 

techniques based on the direct use of Fokker–Planck–Kolmogorov 

equation are limited mainly by one- or two-dimensional systems. 

In these circumstances, the development of constructive approx- 

imation methods in stochastic analysis of probabilistic phenom- 

ena in the multidimensional nonlinear population models attracts 

a common interest. In present paper, we use a new approach based 

on the stochastic sensitivity functions technique and confidence 

domains method [7,8] . A novelty of this study is connected with 

the extension of the stochastic sensitivity theory and confidence 

domains method to the multidimensional case. We demonstrate 

the universality of this new general approach in the probabilistic 

analysis of population systems with multiple trophic levels. 

In systems of interacting populations, a deterministic persis- 

tence analysis is usually reduced to the study of attractors of cor- 

responding dynamic models. In this analysis, Lyapunov exponents 

of attractors are the defining characteristics. But in the study of the 

influence of inevitable random disturbances, it is not sufficient to 

consider these exponents only. In the analysis of the persistence of 

stochastic population models, one should take into account three 
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additional factors. First, an important thing is a type of noises, 

namely, what parameters and equations are forced, and what are 

intensities of these noises. The second factor is a stochastic sensi- 

tivity of attractors. Along with the first factor, the stochastic sen- 

sitivity defines a dispersion of random states of the forced system 

around the deterministic attractor. The third factor is a distance 

between attractor and hazardous borders beyond which the sys- 

tem dynamics abruptly changes, for example, some of the trophic 

levels become extinct. Here, from ecological point of view, one of 

the most important questions is how noise can reduce a number 

of trophic levels. 

Undoubtedly, a mathematical analysis of the interaction of 

these three factors for many-dimensional population models de- 

scribing multiple trophic levels is a challenging problem of the 

modern stochastic dynamics. In present paper, we focus on this 

problem for the case of the many-dimensional stochastic systems 

modeling the dynamics of populations in equilibrium modes. As 

a conceptual example, we consider a three-dimensional food chain 

model of the interacting prey, predator and top predator [36,37,40] . 

In Section 2 , we give a brief review of dynamic regimes of this 

system in the deterministic case. A diversity of equilibrium modes 

is studied in dependence of the prey rate parameter. 

In Section 3 , it is shown how to study a stochastic sensitivity 

of equilibria in many-dimensional population models analytically. 

A simple geometrical description of the random states dispersion 

around the equilibrium is given in a form of the confidence do- 

mains (intervals, ellipses, ellipsoids). 

An application of this mathematical theory of the stochas- 

tic sensitivity to the constructive analysis of different scenaria of 

the noise-induced extinction in systems with different number of 

trophic levels is given in Section 4 . 

2. Deterministic model 

Consider the three-species food chain dynamic model [36–39] 

˙ x = ax − bx 2 − w 0 xy 

x + d 0 
, 

˙ y = −cy + 

w 1 xy 

x + d 1 
− w 2 yz 

y + d 2 
, 

˙ z = dz 2 − w 3 z 
2 

y + d 3 
, 

(1) 

where x, y , and z represent the population densities of prey, 

predator and top predator respectively (for example, rodent-snake- 

peacock). All parameters are positive, and the functional responses 

of Holling-type II with parameters w i , d i (i = 0 , 1 , 2 , 3) are used. In 

the first equation, the parameter a stands for the prey intrinsic 

growth rate, and b measures the competition of preys. In the sec- 

ond equation, the parameter c is a mortality of the predator y . In 

the third equation, the parameter d describes the growth rate of z 

in the assumption that the densities of males and females of top 

predator are equal. 

This system has six equilibria: 

M 0 ( 0 , 0 , 0 ) , 

M 1 

(
a 
b 
, 0 , 0 

)
, 

M 2 

(
cd 1 

w 1 −c , 
1 

w 0 

(
ad 0 + (a − bd 0 ) 

cd 1 
w 1 −c − b 

(
cd 1 

w 1 −c 

)2 
)

, 0 

)
M 3 , 4 ( x 3 , 4 , y 3 , 4 , z 3 , 4 ) , 

M 5 

(
0 , 

w 3 
d 

− d 3 , − c 
w 2 

(
w 3 
d 

− d 3 + d 2 
))

. 

Here, 

x 3 , 4 = 

a −bd 0 
2 b 

± 1 
2 b 

√ 

(bd 0 + a ) 2 − 4 b 
(

w 0 w 3 
d 

− w 0 d 3 
)
, 

y 3 , 4 = 

w 3 
d 

− d 3 , 

z 3 , 4 = 

(
−c + 

w 1 x 3 , 4 
x 3 , 4 + d 1 

)
y 3 , 4 + d 2 

w 2 
. 

Table 1 

Set of parameters. 

a is a bifurcation parameter b = 0 . 06 w 0 = 1 d 0 = 10 

c = 1 w 1 = 2 d 1 = 10 w 2 = 0 . 405 d 2 = 10 

d = 0 . 038 w 3 = 1 d 3 = 20 

Table 2 

Eigenvalues of Jacobi matrices of equilibria. 

Equilibrium λ1 λ2 λ3 

M 0 a −1 0 

M 1 −a 
a − 0 . 6 

a + 0 . 6 
0 

M 2 0.6 < a 0 . 25 a − 0 . 45 ± 0 . 5 
√ 

0 . 25 a 2 − 1 . 1 a − 0 . 39 0 

M 3 0.9158 < a < 1.2966 − − −

Following [27] , we fix all parameters except the control param- 

eter a (see the Table 1 ). 

For this set of parameters, points M 4 and M 5 do not belong to 

the first octant. So, it what follows, we consider only four equilib- 

ria: 

M 0 (0 , 0 , 0) , M 1 

(
a 

0 . 06 

, 0 , 0 

)
, M 2 (10 , 20 a − 12 , 0) , 

M 3 ( x 3 , y 3 , z 3 ) . (2) 

Here, 

x 3 = 

a 

0 . 12 

− 5 + 

1 

0 . 12 

√ 

(a + 0 . 6) 2 − 1 . 52 , y 3 = 6 . 31579 , 

z 3 = −40 . 3 + 80 . 6 

x 3 
x 3 + 10 

. 

Note that the equilibrium M 2 has positive coordinates for a > a 1 = 

0 . 6 , and the equilibrium M 3 has positive coordinates for a > a 2 = 

0 . 9158 . The equilibrium M 3 loses its stability at the Andronov-Hopf 

bifurcation point a 3 = 1 . 2966 . 

In the Table 2 , eigenvalues of the Jacobi matrices of system 

(1) for all these equilibria are shown. In the range a 2 < a < a 3 , all 

eigenvalues of the Jacobi matrix of the equilibrium M 3 have nega- 

tive real parts. 

So, in system (1) , in dependence of the rate a , three dynamic 

regimes can be observed. 

1) For 0 < a < a 1 , the system (1) has two equilibria: M 0 with the 

basin of attraction B 0 = { (x, y, z) | x = 0 , y ≥ 0 , z ≥ 0 } ; M 1 with 

B 1 = { (x, y, z) | x > 0 , y ≥ 0 , z ≥ 0 } . 
2) For a 1 < a < a 2 , the system possesses three equilibria: M 0 with 

the same basin B 0 ; M 1 with new basin B 1 = { (x, y, z) | x > 0 , y = 

0 , z ≥ 0 } ; M 2 with the basin B 2 = { (x, y, z) | x > 0 , y > 0 , z ≥ 0 } ; 
3) For a 2 < a < a 3 , there are four equilibria: M 0 with the same 

basin of attraction B 0 ; M 1 with B 1 = { (x, y, z) | x > 0 , y = 0 , z ≥
0 } ; M 2 with the new basin B 2 = { (x, y, z) | x > 0 , y > 0 , z = 0 } , 
and the non-singular equilibrium M 3 with the basin of attrac- 

tion B 3 = { (x, y, z) | x > 0 , y > 0 , z > 0 } . 
If the initial state of system (1) is non-singular, i.e. belongs to 

the set {( x, y, z )| x > 0, y > 0, z > 0}, then the trajectory tends to M 1 , 

or to M 2 , or to M 3 depending on the parameter a . Coordinates of 

attracting points as a function of the parameter a are plotted in 

Fig. 1 . Here, one can see that in the first zone 0 < a < a 1 , the point 

M 1 is attracting, so predators’ populations y and z are extinct, and 

only the prey x thrives. Note that the increasing a implies a natural 

growth of the equilibrium values of prey. 

In the second zone a 1 < a < a 2 , trajectories tend to M 2 that cor- 

responds to the extinction of the predator z and coexistence of 
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