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a b s t r a c t 

An anatomically detailed model consisting of a network of electric transmission lines is developed to 

simulate propagation of the pulse waves in humans. The simulations show that the real arterial tree 

geometry, together with the elastic and rheological parameters of particular segments, ensure an effi- 

cient protection of vital organs against pulse waves generated at peripheral locations. Because locomotive 

movements are the most obvious source of such disturbances, additional cyclic perturbations are applied 

to the model femoral arteries. It is shown that the impact of such peripherally generated pulse waves 

onto the pressure profiles at the ascending aorta and at other vital locations of the system is surprisingly 

weak independently of synchronization/desynchronization with the heart action period. This may witness 

to an intrinsically protective nature of the arterial tree anatomy in addition to its known functionality of 

the optimal blood supply at possibly low lumen volume. The extent of the protection is also studied in 

the presence of a complete arterial embolism at the left common carotid artery. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Since its introduction some decades ago, one-dimensional (1-D) 

modelling of the blood flow in deformable vessels has proven to 

be a simple and effective approach to simulations of the hemody- 

namics in the larger arteries of the body [1,2] . Numerous useful 

results consistent with medical records [3–6] have been obtained. 

Advanced modelling is needed to assist surgical procedures like ra- 

dial harvesting for coronary revascularization [7] and reconstruc- 

tive surgery [8,9] . In its simplest realization the model involves 

lengths and topology of the arterial segments as well as the 

propagation parameters: the phase velocity and the characteristic 

impedance of each segment. This allows the reflection and trans- 

mission coefficients to be calculated at each bifurcation [5,6] . 

In the present work we focus on the response of the whole 

arterial system to the pulse waves produced by the heart and to 

other waves generated at different arterial locations. Muscles con- 

traction in limbs and other organs must also propagate through 

the system. As a first attempt, we use 55 main arteries as depicted 

in Fig. 1 . The radii, curvatures and elastic parameters of the ves- 

sels are available in literature [1–6] . However, these parameters 

are usually not constant along the segments. A practical method to 
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obtain the electric parameters from the detailed anatomical data is 

sketched in Section 2 . The 1-D model can predict blood pressure 

during exercise using data collected at rest [10] . The measurement 

results from 11 healthy volunteers at rest and during steady exer- 

cise are available in literature [11,12] . 

The purpose of the present study is to give a quantitative ac- 

count of the effect of physical exercise on the temporal pressure 

and flow profiles in the arterial system, i.e. to find out how the cor- 

responding disturbances of pressure and flow propagate through 

the entire system. The problem is of practical importance be- 

cause physical exercise is a significant prophylactic factor against 

ischemic diseases. The results may also help to define indications 

to the participants of spaceflights to efficiently minimize inflight 

overload and other disturbances. The problem is also interesting 

from the fundamental research point of view, namely to what ex- 

tent passive models, i.e. the ones without voltage and/or current 

sources are capable to reproduce the physiology of the arterial sys- 

tem (for models of neural heart rate control via baroreceptors and 

reflex arc see e.g. [13–15] ). Finally, the present study tests the as- 

sumption that allows one to reduce the arterial circulatory system 

to a network of 1-D transmission lines. 

2. Propagation of pulse waves 

The elasticity of vessel walls is at the origin of the wave-like 

character of blood flow in arteries. In principle the number of 
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Fig. 1. The arterial tree of the human body. Left - topology of the models of the 

arterial network available in [10] , right - real topology. 

propagation modes is infinite [16,17] , but the most significant ef- 

fect belongs to the Young mode easily palpable at wrist. Restrict- 

ing the attention to this mode allows one to treat the vessels as 

monomode 1-D waveguides. 

The method of obtaining 1-D equation of motion in a distensi- 

ble vessel of varying cross section has been developed in [10,18,19] . 

The governing equations involve conservation of mass and the mo- 

mentum balance in a control volume of the 1-D vessel [18,19] . The 

volumetric flow, as a function of space x and time t , Q(x, t) = AU

relates the cross section area A and the average axial velocity U 

tethered in longitudinal direction. The pressure P is assumed con- 

stant across the section, whereas the radial and azimuthal com- 

ponents of velocity are neglected. Gravitational effects are ignored 

because all the simulations performed in this work refer to a 

supine subject. The system of equations is: ⎧ ⎪ ⎨ 

⎪ ⎩ 
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where ρ is the blood density, f ( x, t ) is the frictional force per 

unit length and α(x, t) = 

1 
AU 2 

∫ 
A u 

2 d σ is a non-dimensional pro- 

file shape factor (also called the Coriolis coefficient) that accounts 

for the non-linearity of the sectional integration of the velocity 

u = u (x , t) . Here we will use the approximate value α ≈ 1 in the 

convective acceleration term of Eq. (1) . Blood density ρ and vis- 

cosity μ of the blood are assumed to be constant at 37 °C so that 

ρ = 1050 kg m 

−3 and μ = 4 . 0 mPa s [10] . Eq. (1) can be derived 

by integrating the incompressible Navier-Stokes equations over a 

generic cross section of a cylindrical domain [1,20–24] . 

In 1-D modelling the velocity profile is commonly assumed to 

be constant in shape and axisymmetric. A typical profile satisfying 

the no-slip condition ( u | r= R = 0 ) is [1,20] : 

u (x, r, t) = U 

ξ + 2 

ξ

[
1 −

(
r 
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)ξ
]
, (2) 

where r is the radial coordinate, R ( x, t ) is the radius of the lumen 

(assumed to be circular) and ξ = 

2 −α
α−1 is a constant. 

An explicit algebraic relationship between P and A (the tube 

law) is also required to close Eq. (1) . The tube law is determined 

by the viscoelastic properties of the vessel walls [25] . Voigt-type 

visco-elastic laws reproduce, in the first approximation, the main 

effects of the walls’ properties on the blood flow in large arteries, 

including hysteresis and creep [26–31] . An example of this type of 

law that neglects the effects of wall inertia and longitudinal pre- 

stress [32] is given by [31] : 
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where P e is the elastic component of pressure, h ( x ) is the wall 

thickness, β( x ) is related to the wall elasticity whereas E ( x ) and 

�( x ) to the wall viscosity ϕ( x ); both independent of the transmural 

pressure. The reference area A 0 ( x ) is the vessel area when P = P ext 

and 

∂A 
∂t 

= 0 , which are typical initial conditions for numerical anal- 

ysis. Therefore, the local cross-sectional area A ( x, t ) will depend on 

the shape of the artery given by A 0 ( x ) and the mechanical proper- 

ties of the wall, which may change with x . For example, the arterial 

wall becomes stiffer as the distance from the heart increases. 

In the 1-D formulation the nodes connecting the arterial seg- 

ments are treated as discontinuities, which is consistent with the 

long-wavelength approximation. Detailed 3-D calculation of flow at 

arterial bifurcations show that the flow is generally very complex 

with the possibility of transient separation and the development of 

secondary flows [10] . Most of these flow features are confined to 

the region near the bifurcation and the long wave approximation 

allows one to neglect their effects on the pulse wave in the 1-D 

formulation. 

The linearization of the governing equations yields an analogy 

with a transmission line: where resistance R , inductance L , and ca- 

pacitance C are calculated per unit length of vessel as follows: 

R = 

2(ξ + 2) πμ

A 

2 
0 

, L = 

ρ

A 0 

, C = 

2 A 

3 / 2 
0 

β
, (5) 

Eq. (5) allows us to determine the wave speed c = 

√ 

1 
CL and the 

characteristic impedance Z = 

ρc 
A 0 

for every segment of a given 

artery [10] . 

3. Model of the arterial tree 

We solve the nonlinear 1-D Eqs. (1) and (3) using finite ele- 

ment methods, such as Galerkin [32] and Taylor-Galerkin (com- 

bined with operator splitting techniques) [10] schemes. The lin- 

earized system of governing equations yields an analytical solution 

for wave reflection and transmission where the physical properties 

of the arteries change. At a splitting and merging junction, the re- 

flection coefficients R a 
f 
, R b 

f 
, R c 

f 
for wave propagating in the parent 

a and two daughter, vessels b and c respectively can be defined 

as the ratio of the pressure amplitude in the reflected wave to the 

pressure amplitude in the incident wave. They can be expressed as 

a function of the characteristic impedance of each segment: 

R 

a 
f = 
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−1 − (Z b 0 ) 

−1 − (Z c 0 ) 
−1 

(Z a 
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0 
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The transmission coefficients T a , T b , T c for waves propagating in 

the parent, a , and two daughter, b and c , vessels can be defined as 

the ratio of the pressure perturbation transmitted to the other two 

vessels to the pressure perturbation in the vessel where the initial 

wave is propagated: 

T j = 1 + R 

j 

f 
, j = a, b, c. (7) 
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