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We analyse an SIR model where the epidemiological parameters are subject to small amplitude random 

fluctuations. We derive a final size equation and extend the result to an SEIR model. We use a small am- 

plitude perturbation to estimate the expected final size of the SIR model and its variance, and compare 

the result with numerical simulations. We show that although individual realisations may exhibit con- 

siderable variation around solutions of the deterministic model, the mean of the final size distribution is 

in good agreement with the deterministic final size, and its standard deviation is small compared to the 

mean. 

© 2016 Published by Elsevier Inc. 

1. Introduction 1 

The use of mathematical models for understanding infectious 2 

disease dynamics is now well-established [6] . Whereas in the past 3 

there may have been a perception that deterministic and stochas- 4 

tic models were applied in mutually exclusive studies [5] , there is 5 

now a realisation that both types of model have their uses and are 6 

appropriate in different circumstances [2,3,13] . For a recent review 7 

of progress and the remaining challenges with stochastic epidemic 8 

models see [4] . 9 

An analysis of a simple deterministic epidemic model fre- 10 

quently involves relating the basic reproduction number R 0 to the 11 

final size of the epidemic [6,11] . For a stochastic model the final 12 

size may be expressed as a probability distribution, rather than 13 

as a number or proportion [2] . Here, we consider a generalisa- 14 

tion of the well-known deterministic SIR and SEIR models, replac- 15 

ing their parameters with a fixed parameter plus a small amplitude 16 

randomly fluctuating component. We approximate this fluctuating 17 

component with white noise and use results from stochastic cal- 18 

culus [7,10] to analyse the models. The introduced noise may be 19 

due to individual hosts responding to infection at different times, 20 

with heterogeneous responses, or to environmental fluctuations. 21 

This technique has previously been used to establish conditions for 22 

the persistence of an endemic state of an SIS model [9] , and con- 23 

ditions for the stability of the disease-free equilibrium of an en- 24 

demic SIR model [14] . Khaladi and co-workers have analysed an 25 

epidemic model in a random environment that changes between 26 

a finite number of configurations at times determined according 27 
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to a Markov process [1,8] . In a previous study we analysed an SIR 28 

model where R 0 was specified by a distribution rather than a sin- 29 

gle value [12] . In that model the dynamics were deterministic once 30 

the parameters of the distribution had been chosen, although the 31 

final size was then specified as a probability distribution. 32 

In Section 2 we discuss an SIR model with small amplitude 33 

white noise added to the parameters. In Section 3 we derive a 34 

quantity whose expected value may be used to determine the final 35 

size of an epidemic. In Section 4 we approximate our stochastic 36 

model with a linear stochastic process that is a small perturbation 37 

of the deterministic model, and derive an expression for the ex- 38 

pected final size and its variance, which we compare with numeri- 39 

cal simulations of the stochastic model. We extend these results to 40 

an SEIR model in Section 5 . 41 

2. A stochastic SIR model 42 

We consider an SIR epidemic model [6,11] of the form: 43 

˙ x (t) = −βxy 

˙ y (t) = βxy − γ y (1) 

with initial conditions x (0) = x 0 , 0 < x 0 < 1; and y (0) = y 0 , 0 < 44 

y 0 � 1; where x ( t ) is the proportion of the population suscepti- 45 

ble at time t , and y ( t ) is the proportion of the population infec- 46 

tious. The basic reproduction number is R 0 = 

β

γ
. It is well-known 47 

[11] that for this model (assuming the population to be large): an 48 

epidemic occurs if R 0 x 0 > 1 ; the proportion of the population that 49 

is infected can be approximated initially by y (t) = y 0 e 
βx 0 t−γ t ; dur- 50 

ing the epidemic x + y − R 

−1 
0 

log x is a conserved quantity; and the 51 

proportion of the population that is infected during the entire epi- 52 
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demic, P = x 0 − x ∞ 

, solves the final size equation 53 

log 

(
1 − P 

x 0 

)
+ R 0 P = 0 (2) 

It would be unusual for an epidemic to be allowed to run its 54 

course. More generally, if a control measure reduces R 0 to a value 55 

R c say, when the prevalence of infection is y 1 and a proportion x 1 56 

of the population is susceptible, then the further proportion of the 57 

population that will be infected by the time the prevalence reaches 58 

y 2 may be found by solving the equation 59 

log 

(
1 − p 

x 1 

)
+ R c p = R c ( y 2 − y 1 ) 

for p . We will investigate the changes in these results, and in the 60 

dynamics of the system, when the contact and recovery rates, and 61 

hence the basic reproduction number R 0 , are subject to random 62 

variation. 63 

Consider the SIR model with noise in the contact and recovery 64 

rates 65 

d S t 

d t 
= −βt S t I t (3) 

d I t 

d t 
= βt S t I t − γt I t 

We use the subscript t to denote a stochastic process in time. We 66 

approximate the noise components of β t and γ t on a finite interval 67 

[0, T ] as follows. Choose integers m and n such that n �t = 1 time 68 

unit, and T = m �t . Define a function w 

(n ) (t) = w i for ( i − 1 ) �t < 69 

t < i �t and i = 1 . . . m . Let the w i be independent and identically 70 

distributed random variables, with mean w̄ and variance σ 2 . We 71 

now define 72 

W 

(n ) 
t = 

w 

(n ) (t) − w̄ 

σ
√ 

�t 

and observe that 73 

∫ T 

0 

W 

(n ) 
t d t = 

T 

σ
√ 

�t 

( 

1 

m 

m ∑ 

i =1 

w i − w̄ 

) 

The summation in the equation above is an estimate of w̄ based 74 

on m samples, hence it is normally distributed for large m with 75 

expected value w̄ and variance σ 2 / m . The integral 
∫ T 

0 W 

(n ) 
t d t has 76 

expected value zero, and 77 

E 

[ (∫ T 

0 

W 

(n ) 
t d t 

)2 
] 

= 

(
T 

σ
√ 

�t 

)2 
σ 2 

m 

= T 

Taking the limit as n → ∞ , W 

(n ) 
t �t → W t d t = d B t where W t is 78 

white noise and B t is Brownian motion. We now write 79 

βt (ω) = β

(
1 + εβ

d B 

(β) 
t 

d t 

)
γt (ω) = γ

(
1 + εγ

d B 

(γ ) 
t 

d t 

)

where εβ and εγ are positive, and B 
(β) 
t (ω) and B 

(γ ) 
t (ω) are two 80 

independent Brownian motions for a given realisation ω. We re- 81 

quire εβ and εγ to be small in the sense that β t ( ω) and γ t ( ω) 82 

are almost always positive, a requirement satisfied when ε2 
β

+ ε2 
γ is 83 

small compared with �t . Note that εβ and εγ have units [ time ] 
1 
2 84 

and W t has units [ time ] 
− 1 

2 . We assume that the dimensionless 85 

quantities δβ = εβ

√ 

β and δγ = εγ
√ 

γ are small compared to one. 86 

Eq. (3) can be rewritten 87 

d S t (ω) = −βS t I t d t − εββS t I t d B 

(β) 
t (ω) 

d I t (ω) = βS t I t d t − γ I t d t + εββS t I t d B 

(β) 
t (ω) − εγ γ I t d B 

(γ ) 
t (ω) 

(4) 

Fig. 1. The dynamics of the stochastic SIR model calculated numerically from 

Q2 

Eq. (4) : (A) S t the proportion of the population susceptible and (B) I t the proportion 

infectious against time . A total of 200 realisations are shown, with four sample plots 

highlighted in red, green, magenta and cyan, the rest in blue. The deterministic so- 

lution is shown in black. Parameter values are S 0 = 1 , β = 2 , γ = 1 , εβ = 0 . 075 , 

εγ = 0 . 025 . Hence δβ = 0 . 106 and δγ = 0 . 025 . (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 

Numerical solutions of multiple realisations of Eq. (4) are pre- 88 

sented in Fig. 1 . 89 

In the initial part of the epidemic, taking S t = S 0 , the second of 90 

Eq. (4) becomes a stochastic population growth equation 91 

d I t (ω) = ( βS 0 − γ ) I t d t + ε0 γ I t d B 

(0) 
t (ω) (5) 

where 92 

ε0 = 

√ (
βS 0 
γ

)2 

ε2 
β

+ ε2 
γ

and 93 

B 

(0) 
t (ω) = 

βS 0 
γ

εβ

ε0 

B 

(β) 
t (ω) − εγ

ε0 

B 

(γ ) 
t (ω) 
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