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a b s t r a c t 

Likelihood-based inference for disease outbreak data can be very challenging due to the inherent depen- 

dence of the data and the fact that they are usually incomplete. In this paper we review recent Approx- 

imate Bayesian Computation (ABC) methods for the analysis of such data by fitting to them stochastic 

epidemic models without having to calculate the likelihood of the observed data. We consider both non- 

temporal and temporal-data and illustrate the methods with a number of examples featuring different 

models and datasets. In addition, we present extensions to existing algorithms which are easy to im- 

plement and provide an improvement to the existing methodology. Finally, R code to implement the 

algorithms presented in the paper is available on https://github.com/kypraios/epiABC . 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

The past two decades have seen a significant growth in the field 

of mathematical modelling of communicable diseases and this has 

led to a substantial increase in our understanding of infectious- 

disease epidemiology and control. Understanding the spread of 

communicable infectious diseases is of great importance in order 

to prevent major future outbreaks and therefore it remains high 

on the global scientific agenda, including contingency planning for 

the threat of a possible influenza pandemic. The main purpose 

of this paper is to give an introduction and overview of some of 

the recent work concerned with Approximate Bayesian Computa- 

tion methods for performing (approximate) Bayesian inference for 

stochastic epidemic models given data on outbreaks of infectious 

diseases. In addition, we present novel modifications to the exist- 

ing algorithms and show that such modifications can be more ef- 

ficient than the existing state-of-the-art algorithms. In the present 

section we discuss generic ideas with the bulk of the remainder of 

the paper containing various algorithms and illustrative examples. 

1.1. Models and inference for epidemic models 

It has been widely recognised that mathematical and statistical 

modelling has become a valuable tool in the analysis of infectious 
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disease dynamics by supporting the development of control strate- 

gies, informing policy-making at the highest levels, and in gen- 

eral playing a fundamental role in the fight against disease spread 

[30] . 

The transmissible nature of infectious diseases makes them fun- 

damentally different from non-infectious diseases, and therefore 

the analysis of disease outbreak data cannot be tackled using stan- 

dard statistical methods. This is mainly due to the fact that the 

data are i) highly dependent and ii) incomplete, in many differ- 

ent ways since the actual transmission process is not directly ob- 

served. However, it is often possible to construct simple stochastic 

models which describe the key features of how an infectious dis- 

ease spreads in a population. The complexity of the models typ- 

ically varies depending on the application in question as well as 

the data available. For example, models may incorporate a latent 

period during which individuals are infected but not yet infectious, 

reduced infectivity after control measures are imposed, etc. Simi- 

larly, aspects of the population heterogeneity can also be included 

such as age structure and that individuals live in households and 

go to workplaces, etc. 

Models can then be fitted to data either within a classical or 

Bayesian framework to draw inference on the parameters of in- 

terest that govern transmission. In turn these parameters can be 

used to provide useful information about quantities of clinical or 

epidemiological interest. One needs always to strike a balance be- 

tween model complexity and data availability. In other words, it is 

not wise to construct a fairly complicated model when not much 

data are available and vice versa. 
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1.2. Bayesian inference 

In frequentist inference, model parameters are regarded as fixed 

quantities. On the other hand, a Bayesian approach treats all the 

unknown model parameters as random variables, enabling us to 

quantify the uncertainty of our estimates in a coherent, probabilis- 

tic manner. The Bayesian paradigm to inference operates by first 

assigning to the parameters a prior distribution which represents 

our belief about the unknown parameters ( θ ) before seeing any 

data. Subsequently this prior information is updated in the light of 

experimental data ( D ) using Bayes theorem by multiplying it with 

the likelihood π ( D | θ ) and renormalising, thus leading to the pos- 

terior distribution π ( θ | D ) via: 

π(θ | D ) = 

π(D | θ ) π(θ ) ∫ 
θ π(D | θ ) π(θ ) d θ

∝ π(D | θ ) π(θ ) . (1) 

All Bayesian inference arises from the posterior distribution in 

the sense that π ( θ | D ) contains all the information regarding our 

knowledge about the parameters θ given the experimental data D 

and any prior knowledge which might be available. Point and in- 

terval summaries of the posterior distribution (such as mean, me- 

dian and credible intervals) can easily be obtained. The advantage 

of a Bayesian approach as opposed to a frequentist inference is that 

the former enables the complete quantification of our knowledge 

about the unknown parameters in terms of a probability distribu- 

tion. We highlight such advantages in subsequent Sections. 

1.3. Approximate Bayesian Computation 

The main task in Bayesian statistics is to derive the posterior 

distribution of the parameters given the data π ( θ | D ). For many 

models the likelihood of observed data π ( D | θ ) is costly to com- 

pute and in other cases the observed data are insufficient to write 

down a tractable likelihood. However, provided that it is possible 

to simulate from the model, then “implicit” methods such as Ap- 

proximate Bayesian Computation (ABC) allows us to perform infer- 

ence without having to compute the likelihood. 

We have already mentioned above that one of the difficulties 

when fitting models to disease outbreak data is that the infection 

process is unobserved. The likelihood of the observed data can be- 

come very difficult to evaluate and so is the posterior distribution. 

This is particularly the case when analysing temporal data, since 

calculating the likelihood involves integration over all possible in- 

fection times, which is rarely analytically possible. On the other 

hand, simulating realisations from a stochastic epidemic model is 

relatively straightforward. Therefore, ABC algorithms are very well 

suited to make inference for the parameters of epidemic mod- 

els based on partially observed data and this has been illustrated 

when both temporal [39] and non-temporal data [40] are available. 

1.4. Other approaches to inference 

One way to overcome this issue is to employ data imputation 

methods where unknown quantities (such as the infection times) 

are treated as additional model parameters and inferred along with 

the other parameters. One of the most widely used methods for 

doing so is Markov Chain Monte Carlo (MCMC) which have revolu- 

tionised not only Bayesian statistics, but have also been developed 

for fitting stochastic epidemic models to partially observed out- 

break data [28,43] . Despite being successfully applied to a wide va- 

riety of applications such as Foot-and-Mouth [19,33,51] , SARS out- 

breaks [38] , healthcare-associated infections (such as MRSA and C. 

difficile) [26,34] and Avian, H1N1 and H3N2 influenza [17,18,31] as 

the population size increases and/or the model becomes more so- 

phisticated, the likelihood can become prohibitively costly to com- 

pute. In addition, non-standard and problem-specific MCMC algo- 

rithms need to be designed to improve on the efficiency of the 

standard algorithms. 

The remainder of the paper is structured as follows. In 

Section 2 , we introduce the ABC algorithm including extensions to 

ABC-MCMC and sequential based ABC-PMC. In Section 3 , we ap- 

ply the ABC algorithm to non-temporal (final outcome) data, firstly 

to a homogeneously mixing SIR epidemic model and secondly to a 

household SIR epidemic model. For the latter we introduce a new 

partially coupled ABC algorithm which offers significant gains in 

efficiency. In Section 4 , we turn to the analysis of temporally ob- 

served epidemic data, in particular, the effective implementation of 

adaptive ABC-PMC algorithms. 

2. ABC algorithms 

Intuitively, ABC methods involve simulating data from the 

model using various parameter values and making inference based 

on which parameter values produced realisations that are “close”

to the observed data. Algorithm 1 generates exact samples from 

the Bayesian posterior density π ( θ | D ) as defined in (1) . 

Algorithm 1 Exact Bayesian Computation (EBC). 

Input: observed data D , parameters governing π(θ ) 

Output: samples from π(θ | D ) 

1: Sample θ ∗ from π(θ ) . 

2: Simulate dataset D 

∗ from the model using parameters θ ∗. 

3: Accept θ ∗ if D 

∗ = D , otherwise reject. 

4: Repeat until the required number of posterior samples is ob- 

tained. 

This algorithm is only of practical use if D is discrete, else the 

acceptance probability in Step 3 is zero. For continuous distribu- 

tions, or discrete ones in which the acceptance probability in step 

3 is unacceptably low, [46] suggested the following algorithm: 

Algorithm 2 Approximate Bayesian Computation (vanilla ABC). 

Input: observed data D , tolerance ε, distance function d(·, ·) , 
summary statistics s (·) , parameters governing π(θ ) 

Output: samples from ˜ π(θ | D ) = π(θ | D, d(s (D ) , s (D 

∗)) ≤ ε) 

1: Sample θ ∗ from π(θ ) . 

2: Simulate dataset D 

∗ from the model using parameters θ ∗. 

3: Accept θ ∗ if d 
(
s (D ) , s (D 

∗) 
)

≤ ε, otherwisereject. 

4: Repeat until the required number of posterior samples is ob- 

tained. 

Here, d ( ·, ·) is a distance function, usually taken to be the L 2 - 

norm of the difference between its arguments; s ( ·) is a function of 

the data; and ε is a tolerance. Note that s ( ·) can be the identity 

function but in practice, to give tolerable acceptance rates, it is of- 

ten the case that it is a lower-dimensional vector comprising sum- 

mary statistics that characterise key aspects of the data. In addi- 

tion, if the prior and the posterior distribution are rather different, 

for example, in the case where the data are very informative about 

the model parameters then the rejection sampling approach of this 

ABC algorithm will be very inefficient. A wide range of extensions 

to the original ABC (which is often termed vanilla ABC) algorithm 

have been developed over the past decade and it still remains a 

topic of significant research interest. 

2.1. Summary statistics 

As discussed above, using s ( ·) as the identity function gives an 

inefficient ABC algorithm if the data is high dimensional. The un- 

derlying reason is a curse of dimensionality issue. Roughly speaking, 
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