
ARTICLE IN PRESS 

JID: MBS [m5G; September 24, 2016;19:22 ] 

Mathematical Biosciences xxx (2016) xxx–xxx 

Contents lists available at ScienceDirect 

Mathematical Biosciences 

journal homepage: www.elsevier.com/locate/mbs 

Evaluating targeted interventions via meta-population models with 

multi-level mixing 

Zhilan Feng 

a , Andrew N. Hill b , Aaron T. Curns c , John W. Glasser c , ∗Q1 

a Department of Mathematics, Purdue University, West Lafayette, IN, United States 
b National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, CDC, Atlanta, GA, United States 
c National Center for Immunization and Respiratory Diseases, CDC, Atlanta, GA, United States Q2 

a r t i c l e i n f o 

Article history: 

Available online xxx 

Keywords: 

Meta-population modeling 

Mixing functions 

Designing or evaluating public health 

interventions 

a b s t r a c t 

Among the several means by which heterogeneity can be modeled, Levins’ (1969) meta-population ap- 

proach preserves the most analytical tractability, a virtue to the extent that generality is desirable. When 

model populations are stratified, contacts among their respective sub-populations must be described. Us- 

ing a simple meta-population model, Feng et al. (2015) showed that mixing among sub-populations, as 

well as heterogeneity in characteristics affecting sub-population reproduction numbers, must be consid- 

ered when evaluating public health interventions to prevent or control infectious disease outbreaks. They 

employed the convex combination of preferential within- and proportional among-group contacts first 

described by Nold (1980) and subsequently generalized by Jacquez et al. (1988). As the utility of meta- 

population modeling depends on more realistic mixing functions, the authors added preferential contacts 

between parents and children and among co-workers (Glasser et al., 2012). Here they further generalize 

this function by including preferential contacts between grandparents and grandchildren, but omit work- 

place contacts. They also describe a general multi-level mixing scheme, provide three two-level examples, 

and apply two of them. In their first application, the authors describe age- and gender-specific patterns 

in face-to-face conversations (Mossong et al., 2008), proxies for contacts by which respiratory pathogens 

might be transmitted, that are consistent with everyday experience. This suggests that meta-population 

models with inter-generational mixing could be employed to evaluate prolonged school-closures, a pro- 

posed pandemic mitigation measure that could expose grandparents, and other elderly surrogate care- 

givers for working parents, to infectious children. In their second application, the authors use a meta- 

population SEIR model stratified by 7 age groups and 50 states plus the District of Columbia, to compare 

actual with optimal vaccination during the 2009 –2010 influenza pandemic in the United States. They also 

show that vaccination effort s could have been adjusted month-to-month during the fall of 2009 to ensure 

maximum impact. Such applications inspire confidence in the reliability of meta-population modeling in 

support of public health policymaking. 

© 2016 Published by Elsevier Inc. 

1. Introduction 1 

Agent-based, network and population models each have fea- 2 

tures that, for particular applications, make one the obvious choice. 3 

For others, identifying the best approach involves weighing their 4 

respective strengths and weaknesses. While each can incorpo- 5 

rate structural heterogeneity, agent-based and meta-population 6 

modeling sacrifice and preserve, respectively, the most analytical 7 

tractability. As analyses invariably increase understanding, we seek 8 

to augment the usefulness of systems of weakly coupled large sub- 9 

populations, or meta-populations [11] , in modeling the spread of 10 
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pathogens, arguably the most important of several challenges that 11 

Ball et al. [1] describe. 12 

In consolidating and extending earlier contributions to our un- 13 

derstanding of the impact of heterogeneity (in characteristics af- 14 

fecting sub-population reproduction numbers) and non-random 15 

mixing, Feng et al. [5] used a convex combination of preferen- 16 

tial within- and proportional among-group contacts [10] . In that 17 

mixing function, the fraction of within-group contacts and their 18 

complements correspond to Ball et al.’s [1] coupling strength, 19 

which determines location on a continuum whose limiting meta- 20 

populations behave as one or as multiple independent sub- 21 

populations. The simplicity of this function facilitates theoretical 22 

studies, but it is too simple for most applications. 23 

Accordingly, we generalized the function of Jacquez et al. 24 

[10] by including preferential contacts between parents and 25 
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children and among co-workers as well as contemporaries [7] . 26 

Here we include grandparents and grandchildren, but omit co- 27 

workers. Together with observations from a study of face-to-face 28 

conversations, a proxy for contacts by which the pathogens caus- 29 

ing respiratory diseases might be transmitted [13] , this new func- 30 

tion permits us to describe mixing patterns within and between 31 

genders by age. Motivated by the consistency of results with ev- 32 

eryday human experience, we develop a formal multi-level mixing 33 

scheme. 34 

We present several two-level examples and show that modeling 35 

influenza by age and gender or location could inform pandemic 36 

mitigation effort s. Our first application aims to facilitate reeval- 37 

uating the impact of prolonged school closures, which could in- 38 

crease mortality among grandparents and other elderly surrogates 39 

for working parents, and second to assist in optimally allocating 40 

available vaccine among groups [5] , a recurring theme with re- 41 

spect to influenza. As public health resources invariably are lim- 42 

ited, other potential applications of our approach abound. 43 

2. Methods 44 

Mixing is inconsequential only in homogeneous populations. 45 

Feng et al. [5] show that heterogeneity in factors affecting sub- 46 

population reproduction numbers increases the meta-population 47 

reproduction number even if mixing is random, and that non- 48 

random mixing increases it further, especially if heterogeneous. 49 

Accordingly, meta-population models must specify the manner in 50 

which sub-population members mix (i.e., proportionally or prefer- 51 

entially, and if the latter, how). 52 

2.1. Theory 53 

Busenberg and Castillo-Chavez [2] define c ij as proportions of 54 

contacts members of group i have with group j , given that i has 55 

contacts. Their criteria that mixing functions should meet are: 56 

1) c i j ≥ 0 , 

2) 
∑ k 

j=1 c i j = 1 , j = 1 , . . . , k, and 

3) a i N i c i j = a j N j c ji , 

where the N i are group sizes and a i are average per capita contact 57 

rates of groups i = 1, …, k , called activities. Formulae derivable from 58 

these conditions follow. 59 

2.1.1. A simple function 60 

If a proportion ε i of i -group contacts is reserved for others 61 

in group i , called preference, and the complement (1 −ε i ) is dis- 62 

tributed among all groups, including i , via the proportional mixing 63 

formula, 64 

a i N i / 
∑ 

j a j N j , then the fractions of their contacts that members 65 

of group i have with members of groups j are 66 

c i j = ε i δi j + ( 1 − ε i ) 

(
1 − ε j 

)
a j N j ∑ 

k ( 1 − ε k ) a k N k 

, 

where δij is the Kronecker delta (i.e., δij =1 if i= j and δij =0 if i � = 67 

j ). Jacquez and colleagues [10] obtained this expression by allowing 68 

the fraction of within-group contacts, ε, to vary among groups in 69 

Nold’s [14] preferred mixing function. 70 

2.1.2. One-Level Mixing 71 

When groups are age classes, Glasser et al. [7] generalized this 72 

function to contacts between parents and children and among 73 

co-workers as well as contemporaries. Here we add a second 74 

generation (i.e., grandchildren and grandparents, another set of 75 

sub- and super-diagonals). For simplicity, we omit contacts among 76 

co-workers and assume that generation time, G (average age of 77 

women at the birth of their daughters) and longevity, L (average 78 

expectation of life at birth or age at death) are constant. Then 79 

the fractions of their contacts that members of group i have with 80 

members of group j may be defined as 81 

c i j := φi j + 

( 

1 −
5 ∑ 

s =1 

ε si 

) 

f j , f j := 

(1 − ∑ 5 
s =1 ε s j ) a j N j ∑ n 

k =1 (1 − ∑ 5 
s =1 ε sk ) a k N k 

, 

where the ε si are fractions of contacts reserved for the s th sub- 82 

population , s = 1, …, 5 (contemporaries, parents, children, grand- 83 

parents, and grandchildren), and a i and N i are the per capita con- 84 

tact rates and sizes of the i th age group, i = 1, …, n. Because people 85 

whose ages equal or exceed G but are less than 2 G may have chil- 86 

dren, but not grandchildren; people whose ages equal or exceed 87 

2 G can have both children and grandchildren; people whose ages 88 

are less than or equal to L –2 G may have parents and grandparents; 89 

people whose ages are less than or equal to L –G may have parents, 90 

but not grandparents; and those whose ages are between 2 G and 91 

L –2 G may have children, grandchildren, parents and grandparents; 92 

we define φij as 93 

φi j := 

⎧ ⎪ ⎨ 

⎪ ⎩ 

δi j ε 1 i + δi ( j+ G ) ε 2 i , G ≤ i < 2 G, 

δi j ε 1 i + δi ( j+ G ) ε 2 i + δi ( j+2 G ) ε 4 i , i ≥ 2 G, 

δi ( j−2 G ) ε 5 i + δi ( j−G ) ε 3 i + δi j ε 1 i , i ≤ L − 2 G, 

δi ( j−G ) ε 3 i + δi j ε 1 i , L − 2 G < i ≤ L − G 

. 

If age groups are 0 −4, 5 −9, … and the generation time is 25 94 

years, by i > G we mean age greater than class 5. Thus, 95 

δi j = 

{
1 if i = j 
0 otherwise 

, δi ( j±G ) = 

{
1 if i = j ± G 

0 otherwise 

and δi ( j±2 G ) = 

{
1 if i = j ± 2 G 

0 otherwise 
. 

To satisfy Busenberg’s and Castillo –Chavez’ [2] third condition 96 

(that contacts must balance), the non-zero elements of �
 ε 2 and 

�
 ε 3 97 

and of �
 ε 4 and 

�
 ε 5 must be related. Again, if age groups are 0 −4, 98 

5 −9, … and the generation time is 25 years, a i ×N i ×ε 4i = 99 

a j ×N j ×ε 5j , for i=11, 12, …, n and j= i –2 G . This ensures that 100 

a i ×N i ×c ij = a j ×N j ×c ji for j= i –2 G . Note also that 0 ≤ ∑ 5 
s =1 ε si ≤ 101 

1 . 102 

2.1.3. Multiple- level mixing 103 

Some applications require multiple strata. Beginning with two, 104 

consider m sub-populations (e.g., locations or genders) and n 105 

classes (e.g., age or activity groups). Let l i denote the i th location ( l 106 

for location) and a j denote the j th age group ( a for age), 1 ≤ i ≤ m 107 

and 1 ≤ j ≤ n . We use this compound notation whenever indices 108 

might otherwise be confused. 109 

Let A l i a j 
denote the activity, or average per capita contact rate, 110 

of individuals at location l i and age a j and N l i a j 
denote the number 111 

of people at location l i of age a j . Then the probability of contact 112 

between persons in location l i , age a j and location l p , age a q may 113 

be described by a matrix with entries 114 

c l i a j l p a q := ε l i a j δl i l p 
δa j a q + (1 − ε l i a j ) f l p a q , 

1 ≤ i, p ≤ m, 1 ≤ j, q ≤ n, 

where 115 

f l p a q := 

(1 − ε l p a q ) A l p a q N l p a q ∑ n 
j=1 

∑ m 

i =1 (1 − ε l i a j ) A l i a j 
N l i a j 

. 

In these expressions, ε l i a j represents preference for one’s own 116 

age/location group, δrs is the Kronecker delta function, taking val- 117 

ues of 1 (if r = s ) or 0 (if r � = s ), and f l p a q is random mixing (i.e., 118 

proportional to contacts, A l p a q N l p a q ). For some applications, how- 119 

ever, mixing among ages and locations (or other strata) are inde- 120 

pendent (e.g., members of an age class may contact others of the 121 
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