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a b s t r a c t 

Mathematical models of biological systems often have components that vary on different timescales. This 

multi-timescale character can lead to problems when doing computer simulations, which can require 

a great deal of computer time so that the components that change on the fastest time scale can be 

resolved. Mathematical analysis of these multi-timescale systems can be greatly simplified by partition- 

ing them into subsystems that evolve on different time scales. The subsystems are then analyzed semi- 

independently, using a technique called fast-slow analysis. In this review we describe the fast-slow anal- 

ysis technique and apply it to relaxation oscillations, neuronal bursting oscillations, canard oscillations, 

and mixed-mode oscillations. Although these example all involve neural systems, the technique can and 

has been applied to other biological, chemical, and physical systems. It is a powerful analysis method that 

will become even more useful in the future as new experimental techniques push forward the complexity 

of biological models. 

© 2016 Published by Elsevier Inc. 

1. Introduction 1 

Biological systems often feature interacting components that 

Q2 

2 

vary on disparate timescales. For example, changes in a cell’s 3 

environment trigger variations in protein levels through a se- 4 

quence of protein –protein interactions, leading to changes in gene 5 

transcription, followed by translation and often post-translational 6 

modification. This process may be followed by translocation of 7 

proteins, such as ion channels or hormone receptors, into the 8 

cell’s plasma membrane, which allows the cell to respond appro- 9 

priately to its environment. This whole process can take hours, 10 

even though the fastest components (such as protein –protein 11 

interactions) occur on the timescale of seconds. An even wider gap 12 

exists between rapid cellular events such as neuronal electrical 13 

activity and much slower circadian rhythms coordinated through 14 

the suprachiasmatic nucleus of the hypothalamus and involving 15 

rhythms in gene expression. 16 

Such examples are problematic for computer simulations of 17 

mathematical models, which are computationally expensive if 18 

changes at the fastest timescale are resolved. Fortunately, there are 19 

specialized mathematical techniques that can be applied to ana- 

Q3 

20 

lyze the behavior of systems in which the separation of timescales 21 

is sufficiently large. There is a substantial literature on multiple- 22 
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scale asymptotic analysis of systems with timescale separation 23 

(e.g., [48] ). Alternatively, one can employ geometric methods of- 24 

ten denoted as fast-slow analysis to simplify the investigation of 25 

the system by breaking it into two or more reduced subsystems 26 

that are more tractable than the full model. There are two primary 27 

goals of this article. The first is to provide an overview of some 28 

fast-slow analysis techniques. The second is to illustrate some be- 29 

haviors that come about in multi-timescale systems and that are 30 

best understood from the viewpoint of fast-slow analysis. We use 31 

examples that involve the dynamics of electrically excitable cells, 32 

but other studies of multiscale dynamics and their analysis fo- 33 

cus on chemically reacting systems, intracellular calcium dynam- 34 

ics, ecology, climate dynamics, and other application areas (e.g., 35 

[45,55,67,74,75,77] ). 36 

A system of ordinary differential equations that evolves on two 37 

timescales can be formally written as 38 

d � x 

dt 
= F ( � x , � y ) (1) 

39 
d � y 

dt 
= εG ( � x , � y ) (2) 

where ε > 0 is small. The fast variables � x evolve on a faster 40 

timescale than the slow variables � y , and we can define a cor- 41 

responding fast subsystem d � x /dt = F ( � x , � y ) , with 

�
 y as parameters, 42 

and slow subsystem d � y /dτ = G ( � x F ( � y ) , � y ) , where � x F is defined from 43 

F ( � x , � y ) = 0 and τ = εt corresponds to a slow timescale. The di- 44 

mensionality of the two subsystems differs among applications, 45 
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but the general approach of fast-slow analysis is to treat the sub- 46 

systems separately. The idea underlying this splitting into subsys- 47 

tems is that from a general initial condition, the system will be 48 

governed by the fast subsystem and will settle to the neighbor- 49 

hood of a fast subsystem attractor, where F = 0 , that is parameter- 50 

ized by � y . Within this neighborhood, the system will evolve slowly, 51 

governed by the slow subsystem, unless a boundary of the attrac- 52 

tor is reached and the fast subsystem takes over again. Fast-slow 53 

analysis is often employed to study relaxation oscillations, such as 54 

those that occur in the van der Pol oscillator with strong damp- 55 

ing [96,102] . Here, the original second-order nonlinear differential 56 

equation can be converted into two first-order differential equa- 57 

tions, yielding a single fast variable and a single slow variable. 58 

This system has been used to describe a heartbeat [103] , and sim- 59 

ilar planar systems have been used to describe electrical impulses 60 

in neurons [40,41,68] , intracellular calcium dynamics in a neuron 61 

[34] , and hourly hormone pulses [105] . 62 

More than twenty years after Richard FitzHugh used fast-slow 63 

analysis to analyze what is now called the FitzHugh –Nagumo 64 

model, John Rinzel adapted the fast-slow analysis technique to un- 65 

derstand the dynamics underlying bursting in neurons and pan- 66 

creatic β-cells [4,78,79,82,83] . Bursting is characterized by ac- 67 

tive episodes of rapid electrical oscillations (also called impulses, 68 

spikes, or action potentials) separated by quiescent or silent 69 

phases, repeated periodically. It is ubiquitous in neurons and en- 70 

docrine cells [24,95] and has been shown to be more effective 71 

at evoking neurotransmitter and hormone secretion than continu- 72 

ous trains of action potentials [61,104] . The technique developed by 73 

Rinzel explains such things as the existence of the bursting oscil- 74 

lation, patterns in interspike interval duration, the duty cycle (the 75 

fraction of the period during which the system is spiking), transi- 76 

tions between bursting and continuous spiking, and the roles that 77 

various ionic currents play in the bursting pattern. In addition, 78 

the bifurcations of the fast subsystem are useful for categorizing 79 

bursts; the bifurcation responsible for the transition from silent to 80 

active phase and that associated with the transition from active 81 

to silent phase determine the type of bursting oscillation [7,51,80] . 82 

Fast-slow analysis is now regularly used in the analysis of bursting 83 

oscillations, and in the first portion of this article we describe the 84 

method and give some applications. 85 

In addition to relaxation and bursting oscillations, one other 86 

class of oscillations that comes up in fast-slow systems is called 87 

mixed-mode oscillations (MMOs). These consist of small-amplitude 88 

oscillations mixed with large-amplitude oscillations, often repeated 89 

periodically. MMOs have been identified and analyzed using math- 90 

ematical models in chemically reacting systems [55,75] , voltage dy- 91 

namics of neurons [10,30,33,44,50,62,65,85–87] and electrically ex- 92 

citable pituitary cells [107,108] , intracellular calcium dynamics [45] , 93 

and elsewhere [67] . The small-amplitude oscillations are often due 94 

to canards , which are orbits that follow a curve or sheet of at- 95 

tracting equilibria as well as a portion of a repelling curve/sheet 96 

of equilibria of the fast subsystem. Though originally studied in a 97 

system with one fast and one slow variable [31,37] , canards can be 98 

generic in systems with two or more slow variables, so they occur 99 

over much larger regions of parameter space in the latter case (see 100 

[29] for an excellent review of canards and MMOs). In the con- 101 

text of neurons, the small oscillations are subthreshold voltage os- 102 

cillations, while the large oscillations are action potentials. Thus, 103 

the canard orbits have the effect of increasing the time between 104 

spikes, and thereby reducing the spike frequency [87] . In electri- 105 

cally excitable pituitary cells the canard orbits themselves are the 106 

“spikes ”, which are typically quite small, and the large oscillations 107 

are repolarizations that occur between bursts [106] . In the second 108 

portion of this article we illustrate how canard orbits come about 109 

in the context of MMOs and discuss some applications of MMOs in 110 

electrically excitable neurons and pituitary cells. 111 

We note that when the first issue of Mathematical Biosciences 112 

was published in 1967, little of what we discuss in this article had 113 

been discovered. Relaxation oscillations had been around for half a 114 

century, but bursting oscillations, canards, and mixed-mode oscil- 115 

lations were all in the future. The future is now! 116 

2. Relaxation oscillations and canards in a planar fast- slow 117 

system 118 

Planar systems allow us to illustrate how the basic interplay be- 119 

tween fast and slow variables can give rise to a characteristic form 120 

of oscillations. Furthermore, they provide a clear view of transitional 121 

phenomena that arise as a parameter is varied such that a bifurca- 122 

tion from steady state to oscillatory behavior occurs. We will illus- 123 

trate these points with a single model system, noting that qualitatively 124 

similar phenomena occur in other systems with similar mathematical 125 

structure. 126 

As mentioned above, the van der Pol oscillator with strong 127 

damping is the can onical fast-slow system with a single fast and 128 

a single slow variable. For purposes of continuity with later sec- 129 

tions, we begin with a fast-slow system that describes membrane 130 

potential oscillations in an electrically active cell and that captures 131 

the dynamic features of the van der Pol oscillator. This is based on 132 

the “s-model ” for pancreatic β cells [91] . This model has a variable 133 

for the membrane potential or voltage ( V ), an activation variable for 134 

the fraction of activated delayed rectifier K 

+ channels ( n ), and an 135 

activation variable for the fraction of activated K 

+ channels of an- 136 

other type ( s ). These latter K 

+ channels could be Ca 2+ -activated K 

+ 137 

channels, for example. The dynamics of the variables are described 138 

by the following differential equations: 139 

dV 

dt 
= −(I Ca + I Kdr + I KAT P + I Ks + I L ) /C m 

(3) 

140 
ds 

dt 
= 

s ∞ 

(V ) − s 

τs 
. (4) 

The change of voltage depends on several ionic currents reflect- 141 

ing ion flux through different ion channels. The V -dependent Ca 2+ 
142 

current, I Ca , is an inward current that is responsible for the up- 143 

stroke of a spike. It is similar to the Na + current in neurons, al- 144 

though its inactivation is much slower and is not included in the 145 

s-model. (A Na + current is also not included, since Na + chan- 146 

nels are inactivated in mouse β cells.) Like the Na + current, the 147 

Ca 2+ current activates very rapidly, and in the s-model it is as- 148 

sumed to adjust instantaneously to changes in V . This is called a 149 

quasi-equilibrium or quasi-steady-state approximation and is often 150 

used in multi-timescale models [42] . Using this assumption, the 151 

Ca 2+ current is I Ca = g Ca m ∞ 

(V )(V − V Ca ) , where g Ca is the maxi- 152 

mum conductance (the conductance when all channels are acti- 153 

vated), V − V Ca is the driving force that powers ion flux through 154 

open channels, and m ∞ 

( V ) is the equilibrium activation function, 155 

given by the increasing sigmoid function 156 

m ∞ 

(V ) = 

1 

1 + e 
v m −V 

s m 

. (5) 

This function, which ranges from 0 to 1, is half-maximal at V = v m 

157 

and the steepness of the curve is determined by s m 

(the curve is 158 

steeper when s m 

is small). The other inward or depolarizing cur- 159 

rent is I L , which is a constant-conductance leakage current that 160 

groups together the effects of various ion-specific flows and takes 161 

the form I L = g L (V − V L ) . 162 

Model (3) and (4) includes three outward or hyperpolarizing 163 

currents, all carried by K 

+ . The first, I Kdr , is the standard delayed 164 

rectifier that is responsible for the downstroke of an action po- 165 

tential. Activation of this current is considerably slower than that 166 

of the Ca 2+ current (otherwise there would be no spike), so the 167 
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