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a b s t r a c t 

Challenging as it typically is, the estimation of parameter values seems to be an unavoidable step in 

the design and implementation of any dynamic model. Here, we demonstrate that it is possible to set up, 

diagnose, and simulate dynamic models without the need to estimate parameter values, if the situation is 

favorable. Specifically, it is possible to establish nonparametric models for nonlinear compartment models, 

including metabolic pathway models, if sufficiently many high-quality time series data are available that 

describe the biological phenomenon under investigation in an appropriate and representative manner. 

The proposed nonparametric strategy is a variant of the method of Dynamic Flux Estimation (DFE), which 

permits the estimation of numerical flux profiles from metabolic time series data. However, instead of 

attempting to formulate these numerical profiles as explicit functions and to optimize their parameter 

values, as it is done in DFE, the metabolite and flux profiles are used here directly as a scaffold for a 

library from which values are interpolated and retrieved for the simulation of the differential equations 

describing the model. Beyond simulations, the proposed methods render it possible to determine steady 

states from non-steady state data, perform sensitivity analyses, and estimate the Jacobian of the system 

at a steady state. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Ever since the digital revolution drove analog computing to 

the brink of extinction, the design of computational models for 

complex systems has become an effort in choosing optimal math- 

ematical representations and their parameter values. For most 

physical and engineering systems, the choice of model functions is 

directly guided by our rather solid understanding of basic physical 

concepts, such as mechanical or electrical forces, dilution and dis- 

persion phenomena, optical processes, and the features of electric 

circuits. Biological systems are, of course, objects of the physical 

world and must therefore obey the laws of physics, but most 

processes that govern even moderately sized biological systems 

are so convoluted that they cannot be dissected into elementary 

physical representations [1] . As an example, the transmission 

of a neuronal signal at a dopamine synapse requires electrical 

activation, the prior biochemical production of dopamine and its 

packaging into membrane vesicles, the move of these vesicles 

through the crowded cytoplasm toward the synapse, the merging 

of vesicle and cell membranes, the opening of this membrane 

toward the synapse, the release of dopamine out of the vesicle 
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and through the synaptic cleft to a receptor on the postsynaptic 

neuron, possible interactions with other neurotransmitters, and 

binding to the receptor. This binding in turn triggers a slew of 

additional mechanisms inside the signal receiving cell, including 

the complex process of signal interpretation which in the case of 

dopamine is often accomplished through multiple phosphorylation 

of the specific protein DARPP32, and the possible long-term adap- 

tation to repeated stimuli [2–5] . Thus, a very coarse model could 

easily capture the fact that a signal moved from one neuron to 

another, but a detailed mechanistic model becomes quickly bogged 

down in the minutiae of the numerous intertwined biophysical 

processes that are involved in signal transduction. 

Because elementary physical descriptions are often infeasible, 

the biological systems modeler is forced to resort to “higher-order”

process representations, ad hoc models, suitable approximations, 

or combinations thereof. A good example is the Michaelis–Menten 

function of enzyme kinetics [6] . Its underlying concept is a process 

that postulates the reversible formation of a biochemical complex 

between an enzyme and its substrate and the subsequent release 

of the product of the reaction and of the enzyme, which is used 

over and over again. Under idealistic conditions in vitro , this 

concept is believed to be quite realistic. However, within living 

cells, the prerequisites for the involved mass-action functions are 

clearly not satisfied, and the so-called quasi-steady-state assump- 

tion, which is needed to formulate the process with a simple, 
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explicit function, only holds under certain conditions. Thus, an 

idealized concept, formulated with the help of somewhat doubtful 

approximations, becomes a higher-order process representation 

for enzyme catalyzed reactions. Indeed, the Michaelis–Menten 

function performs well in vitro and, in an approximate sense, 

presumably in vivo , although this is not really known. For sim- 

ulations of large pathway systems, this function is often used 

as well, but its mathematical features become rather cumber- 

some, even for standard model assessments such as sensitivity 

analyses [7] . 

Notwithstanding these mathematical issues, it is common for 

the biological modeling community to base simulation studies in a 

variety of fields on a rather small set of functions, which are used 

time and again and prominently include mass-action, Michaelis–

Menten and Hill functions, which often include regulatory terms 

[8] . The users of these functions rely on the argument that these 

functions suit their purposes—quasi as black boxes—and are suf- 

ficiently accurate if one considers the typical noise encountered 

in biological data. Furthermore, these particular functions at least 

have some foundation and rationale in biology, whereas the use 

of a function like a shifted arctangent has very little justification, 

except that its graph is s-shaped and therefore might resemble 

some saturation processes in biology. 

True alternatives to these ad hoc approaches are generic 

approximations. Linearization, the simplest of these, has been 

enjoying enormous successes in engineering applications for 

many decades. For the representation of biological phenomena, 

by contrast, linear models tend to run into conflicts with the gen- 

uine nonlinearities that characterize living systems. For instance, 

common features like saturation, stable oscillations, threshold 

phenomena, synergisms, or chaos cannot directly be modeled 

with linear equations. A logical solution might seem to be the 

expansion of linear models to second-order Taylor approximations, 

but these become so awkward for larger systems [9] that very few 

modelers have resorted to this option. Instead, many biological 

modeling groups have been using power-law approximations, 

which are nonlinear, but have linear characteristics in logarithmic 

space. Biochemical Systems Theory (BST; [10–13] ) and Metabolic 

Control Analysis (MCA; [14–17] ), which directly or indirectly utilize 

power-law representations [18,19] , respectively, have had success 

with analyses of a wide variety of complex biological systems (for 

a review, see [20] ). Notwithstanding their successes, power-law 

representations are local approximations and therefore genuinely 

limited in their accuracy of capturing phenomena over large 

ranges of variation in the involved variables. As a case in point, 

univariate power-law functions in BST do not saturate for large 

substrate concentrations, and lin-log models, which are associated 

with MCA, become negative for small substrate concentrations 

and tend toward −∞ for substrate concentrations approaching 0 

[21–23] . As an alternative to these canonical power-law models, 

one could use sigmoidal basis functions, but for realistic models 

this option requires correspondingly larger numbers of parameters 

that need to be estimated [24,25] . 

Even if reasonable guideposts could be found to justify the 

choice of appropriate model representations, the second step of 

model identification is still to be performed, namely the estimation 

of parameter values. For moderately sized or large models, this 

estimation is always challenging [26–28] , due to noise in the data, 

non-convergence of the search algorithm and other problems, or 

because the wrong model was chosen after all. To make matters 

worse, even an excellent fit is not necessarily optimal, and the pa- 

rameterized model may perform poorly in extrapolations, because 

the original fit was obscuring the compensation of errors among 

some terms within the model ( e.g. , see [29,30] ). Furthermore, 

an excellent fit may be the result of overfitting with a model 

containing too many parameters. 

These challenges and compromises lead to the obvious question 

of whether it might be possible to glean appropriate functions 

directly from experimental biological data, without presupposing 

potentially unjustified mathematical formats. The method of Dy- 

namic Flux Estimation (DFE), which permits a relatively unbiased 

estimation of fluxes within a system and which will be reviewed 

later, took a first step toward answering this question affirmatively, 

at least for metabolic systems under ideal conditions [31] . Still, 

DFE requires some choices of model frameworks when the task is 

setting up a model from scratch. 

In this paper, we describe a novel variant of DFE that makes 

such choices unnecessary, at least under favorable conditions. 

Given such conditions, the overall result of the proposed strategy 

is that it is possible to develop dynamic models in a nonpara- 

metric manner. Intriguingly, the resulting nonparametric models, 

which make no assumptions regarding parameter values or even 

mathematical formats, beyond the topology of the system, permit 

most of the typical diagnoses and analyses that are possible with 

a fully parametric model, which may be considered the gold stan- 

dard in the field. As a consequence, simulations and other analyses 

can be performed without the complicated and often biased step 

of choosing models and parameterizing them, if suitable data 

are available. The data needed for this purpose consist of sets of 

time series that representatively capture the dynamics of a system 

under relevant inputs. 

Both DFE and the nonparametric variant proposed here are 

particularly well suited for nonlinear, dynamic, regulated com- 

partment models, because these possess the property of mass 

conservation, which imposes strong, unbiased constraints that 

greatly aid the formulation of appropriate models. As an illustra- 

tion, and for ease of discussion, we will focus here on metabolic 

pathway systems, but it appears that other nonlinear compartment 

systems, such as SIR models of epidemiology and pharmacokinetic 

models, can be treated in the same manner. 

2. Methods 

2.1. Dynamic flux estimation (DFE) 

The stoichiometric equation 

˙ X = S · V (1) 

provides a generic description of the dynamics of a metabolic 

pathway system. This well-known equation collectively formulates 

dynamic changes in each metabolite of the system, dX 
dt 

= 

˙ X , as 

a product between the stoichiometric matrix S and a vector of 

reactions or fluxes, V . This product formulation is remarkable, as 

it naturally separates the linear aspects of the system from its 

nonlinear features. Specifically, consider the situation where the 

slopes of all metabolites on the left-hand sides are known for 

some given time point. If so, Eq. (1) is a system of linear algebraic 

equations, where each variable V j represents the state of a flux at 

this time point, rather than a metabolite. The nonlinear features 

enter the system secondarily, by virtue of the fact that each 

component of the flux vector is a possibly complicated function of 

metabolites and regulators, and therefore of time. Dynamic Flux 

Estimation (DFE) makes maximal use of this separation of the 

model into linear and nonlinear components. 

In typical analyses, such as Flux Balance Analysis, the stoichio- 

metric Eq. (1) is studied at a steady state of the system [32–34] , 

where the vector on the left-hand side contains zeros. DFE reaches 

beyond the steady state, by addressing the system at many time 

points of a system’s trajectory, where the vector of derivatives 

is different from zero. In its first phase, DFE uses time series 

measurements of metabolite concentrations, X 1 , …, X n , along with 

estimates of the slopes of these time courses. Thus, DFE evaluates 
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