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a b s t r a c t 

This paper further develops the connection between Chemical Reaction Network Theory (CRNT) and Bio- 

chemical Systems Theory (BST) that we recently introduced [1]. We first use algebraic properties of ki- 

netic sets to study the set of complex factorizable kinetics CFK (N ) on a CRN, which shares many char- 

acteristics with its subset of mass action kinetics. In particular, we extend the Theorem of Feinberg-Horn 

[9] on the coincidence of the kinetic and stoichiometric subsets of a mass action system to CF kinet- 

ics, using the concept of span surjectivity. We also introduce the branching type of a network, which 

determines the availability of kinetics on it and allows us to characterize the networks for which all 

kinetics are complex factorizable: A “Kinetics Landscape” provides an overview of kinetics sets, their al- 

gebraic properties and containment relationships. We then apply our results and those (of other CRNT 

researchers) reviewed in [1] to fifteen BST models of complex biological systems and discover novel net- 

work and kinetic properties that so far have not been widely studied in CRNT. In our view, these findings 

show an important benefit of connecting CRNT and BST modeling efforts. 

© 2016 Elsevier Inc. All rights reserved. 

1. Commutative algebra of chemical kinetics 1 

In this Introduction, we review concepts and results from 2 

Chemical Reaction Network Theory from a new point of view, 3 

namely in terms of properties of subsets of chemical kinetics. We 4 

provide the underlying definitions in Appendix A.1 together with a 5 

nomenclature section in Appendix B. 6 

In view of the fact that some kinetic functions are not defined 7 

on the entire boundary of R 

S ≥ and the trend to apply a reaction 8 

network approach to non-chemical areas, following the formalism 9 

and terminology of Wiuf and Feliu [26] , we introduce a slightly 10 

more general definition of a kinetics. 11 

Definition 1. A kinetics for a network N = (S , C , R) is an as- 12 

signment to each reaction r j ∈ R of a rate function K j : �K → R ≥, 13 

where �K is a set such that R 

S 

> ⊆ �K ⊆ R 

S ≥ , c ∧ d ∈ �K whenever 14 

c , d ∈ �K , and 15 

K j (c) ≥ 0 , ∀ c ∈ �K . 
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A kinetics for a network N is denoted by K = (K 1 , K 2 , . . . , K r ) : 16 

�K → R 

R 

≥ . 17 

In the definition, c ∧ d is the bivector of c and d in the exterior 18 

algebra of R 

S . Our work is focused on the following subset: 19 

Definition 2. A chemical kinetics is a kinetics K satisfying the pos- 20 

itivity condition: for each reaction r j : y → y ′ , K j ( c ) > 0 iff supp y ⊂ 21 

supp c. 22 

Remark 1. If �K = R 

S 

> , then the additional condition for a chem- 23 

ical kinetics simply says that K j ( c ) > 0 for all c , hence the name 24 

“positivity condition”. 25 

We denote the set of kinetics of a CRN N , defined on �K with 26 

K(N , �K ) . For �K = R 

S ≥ and �K = R 

S 

> , we often write K ≥(N ) 27 

and K > (N ) , respectively. 28 

For any two elements of K(N , �K ) , the sum and product are 29 

defined by componentwise addition and multiplication of their 30 

non-negative values. With these operations, it turns out that the 31 

whole set as well as various subsets of interest in CRNT have nice 32 

algebraic properties. 33 

For the rest of this subsection, for simplicity, we set �K = R 

S ≥ 34 

and denote K ≥(N ) with K(N ) . 35 
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We recall some concepts from Algebra that we will use: a semi- 36 

group is a set S together with a binary operation “◦” such that as- 37 

sociativity holds: x ◦ (y ◦ z) = (x ◦ y ) ◦ z for all x , y , z in S . If there 38 

is an identity element, i.e. id such that x ◦ id = id ◦ x = x for all x 39 

in S , then the semigroup S is called a monoid. Furthermore, a set 40 

R with two binary operations “ + ” and “◦” is called a semiring 41 

if (R, +) and ( R , ◦) are semigroups and distributive laws hold, i.e. 42 

a ◦ (b + c) = a ◦ b + a ◦ c and (b + c) ◦ a = b ◦ a + c ◦ a for a , b , c in 43 

R . A semiring is called a semifield (or “proper semifield”) if ( R ∗, ◦) 44 

is a group, where R ∗ = R \{ 0 } if R has an additive identity 0, and 45 

R ∗ = R otherwise. The basic example for a semifield is the set of 46 

positive real numbers R > . 47 

The following proposition is the basis of our “commutative al- 48 

gebra” approach to chemical kinetics. 49 

Proposition 1. (K(N ) , + , ◦) is a commutative semifield. 50 

Proof. We first need to show that the positivity condition “for 51 

each r : y → y ′ , K r ( x ) > 0 iff supp y ⊂ supp x ” holds for K 1 + K 2 52 

and K 1 ◦K 2 if K 1 , K 2 are in K(N ) . But this is clear since the opera- 53 

tions are defined component-wise: supp y ⊂ supp x ⇒ both K 1, r ( x ), 54 

K 2, r ( x ) > 0, hence sum and product are both positive. Conversely, 55 

supp y not contained in supp x implies both K 1, r ( x ), K 2 ,r (x ) = 0 , 56 

hence both sum and product are equal to 0. 57 

To show that (K(N ) , ◦) is a group, we define the identity ele- 58 

ment 1 K and the inverse element 1/ K for each reaction r : y → y ′ 59 

as follows: 60 

“For supp y ⊂ supp x, (1 K ) r ( x ) := 1 and (1/ K ) r ( x ) := 1/ K r ( x ). Oth- 61 

erwise both functions are equal to 0.” Both functions are chemical 62 

kinetics and have the corresponding properties of an identity and 63 

inverse, respectively. �64 

A number of kinetics subsets, familiar from the CRNT litera- 65 

ture, display interesting algebraic structures. We summarize these 66 

in the following proposition and indicate them in the “Kinetics 67 

Landscape” from our previous paper (Fig. 1 of [1] ). 68 

Proposition 2. Let N = (S , C , R) be a CRN and �K = R 

S ≥ . Denote 69 

K(N , �K ) with K(N ) . 70 

1. The set of continuous kinetics CK (N ) and of differentiable kinet- 71 

ics DK (N ) are sub-semirings of K(N ) . 72 

2. The set of weakly monotonic kinetics WMK (N ) is a sub-semiring 73 

with a multiplicative identity. The set of differentiably monotonic 74 

kinetics DMK (N ) is a sub-semiring of WMK (N ) . 75 

3. The set PLK (N ) of power law kinetics is a multiplicative sub- 76 

group of K(N ) . Its subset of mass action kinetics MAK (N ) 77 

forms an additive subgroup of K(N ) . 78 

Proof. 79 

1. Both properties follow directly from the well-known facts that 80 

the sums and products of continuous and differentiable real 81 

functions are also continuous and differentiable, respectively. 82 

However, the multiplicative identity in general has neither 83 

property at points of the boundary of the definition domain. 84 

2. We first derive the semiring with identity property of 85 

WMK (N ) : If (K 1 + K 2 ) r (x ∗∗) > (K 1 + K 2 ) r (x ∗) , then, for at 86 

least one of the summands, say K 1 , we have K 1 r ( x 
∗∗) > K 1 r ( x 

∗), 87 

so there is a species s with x ∗∗
s > x ∗s . Similarly, if K 1 + K 2 (x ∗∗) > 88 

K 1 + K 2 (x ∗) and K i (x ∗∗) = K i (x ∗) does not hold for both i , then 89 

for at least one, say K 1 , there is a species s with x ∗∗
s > x ∗s . For 90 

the other, the converse inequality holds, so there is a species s ′ 91 

such that x ∗∗
s ′ < x ∗

s ′ . Hence the sum of weakly monotonic kinet- 92 

ics is also weakly monotonic. 1 K is also in WMK (N ) . The same 93 

argument holds for the product. For the multiplicative identity, 94 

only the second condition with equality for all species holds. 95 

1/ K is not necessarily weakly monotonic if K is, since 1/ K ( x ∗∗) > 96 

1/ K ( x ∗) ⇐⇒ K ( x ∗) > K ( x ∗∗), so there is a species s with x ∗s > x ∗∗
s , 97 

but necessarily the other way around. Though, interestingly, 1/ K 98 

fulfills the equality condition. 99 

We next confirm the subsemiring property of DMK (N ) in 100 

WMK (N ) . We first show that it is a subset using the Mean 101 

Value Theorem for the component function K j : �K → R ≥. We 102 

have K j (c ∗∗) K j (c ∗) = 〈 grad(K) , c ∗∗ − c ∗〉 , and since the left hand 103 

side is greater than 0 and all the partial derivatives are ≥ 0, 104 

there must be at least one s such that c ∗∗
s − c ∗s > 0 . Similarly, if 105 

the left hand side is 0, either all c ∗∗
s = c ∗s or there is a pair of s 106 

and s ′ satisfying both c ∗∗
s > c ∗s and c ∗∗

s ′ < c ∗
s ′ . 107 

The additivity of differentiation shows that if K 1 , K 2 are differ- 108 

entiably monotonic, then K 1 + K 2 is too. Similarly, the differen- 109 

tiation rule for a product shows that the product is also dif- 110 

ferentiably monotonic. Clearly, the (constant) identity function 111 

does not fulfill the strict monotonicity condition. 112 

3. The (multiplicative) subgroup property of PLK (N ) is straight- 113 

forward: note however, that the inverse may be defined on a 114 

smaller domain. The additive subgroup property of MAK (N ) 115 

also follows directly from the set’s definition. � 116 

Remark 2. The set MAK (N ) maps bijectively onto the set of R 

R 

> : 117 

the latter is a semifield. In [13] , J. Gunawardena essentially used 118 

the semifield properties of this image of MAK systems, (i.e. build- 119 

ing sums, products, ratios of rate constants) to establish a linear 120 

method for model reduction. This, together with considerations of 121 

approximating novel kinetics possibly with sums and products of 122 

known ones, inspired us to consider algebraic properties of kinet- 123 

ics sets. 124 

Other well known sets of kinetics on a network, such as those 125 

with special equilibria, e.g. the set of complex balanced kinetics 126 

CBK (N ) or those with a particular representation form, e.g. the 127 

set of Hill-type kinetics HT K (N ) , do not have good algebraic 128 

properties, i.e., are not closed under addition and/or multiplication. 129 

The “kinetics subsets” viewpoint also allows a compact way 130 

of expressing the equivalence of structural and kinetic properties, 131 

which we call a “network-kinetic sets relation (NKSR)”. Here are 132 

two well known examples [6] : 133 

• N is weakly reversible iff MAK (N ) ∩ CBK (N ) � = 0 . 134 

• N is weakly reversible and has deficiency zero iff MAK (N ) ⊂ 135 

CBK (N ) . 136 

In the next section, we show further examples, apparently new, 137 

of such relationships. 138 

2. The (multiplicative) subgroup of complex factorizable 139 

kinetics 140 

2.1. Duality of the reactant and reactions mappings and related 141 

properties 142 

We first (re)state some definitions and basic results relevant for 143 

our discussion of complex factorizable kinetics in this and the next 144 

section. 145 

Definition 3. The reactant map ρ : R → C maps a reaction to its 146 

reactant complex. | ρ(R) | , the number of distinct reactant com- 147 

plexes, will be denoted by n r . 148 

Two upper bounds for n r are well-documented in the CRNT lit- 149 

erature: the number of complexes n and the number of reactions 150 

r with the inequalities n ≥ n r and r ≥ n r , respectively. The maxi- 151 

mal values translate to interesting network classes as stated in the 152 

following. 153 
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