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a b s t r a c t 

Understanding the evolution of dispersal is an important issue in evolutionary ecology. For continuous 

time models in which individuals disperse throughout their lifetime, it has been shown that a balanced 

dispersal strategy, which results in an ideal free distribution, is evolutionary stable in spatially varying 

but temporally constant environments. Many species, however, primarily disperse prior to reproduction 

(natal dispersal) and less commonly between reproductive events (breeding dispersal). These species in- 

clude territorial species such as birds and reef fish, and sessile species such as plants, and mollusks. As 

demographic and dispersal terms combine in a multiplicative way for models of natal dispersal, rather 

than the additive way for the previously studied models, we develop new mathematical methods to study 

the evolution of natal dispersal for continuous-time and discrete-time models. A fundamental ecological 

dichotomy is identified for the non-trivial equilibrium of these models: (i) the per-capita growth rates 

for individuals in all patches are equal to zero, or (ii) individuals in some patches experience negative 

per-capita growth rates, while individuals in other patches experience positive per-capita growth rates. 

The first possibility corresponds to an ideal-free distribution, while the second possibility corresponds 

to a “source-sink” spatial structure. We prove that populations with a dispersal strategy leading to an 

ideal-free distribution displace populations with dispersal strategy leading to a source-sink spatial struc- 

ture. When there are patches which cannot sustain a population, ideal-free strategies can be achieved by 

sedentary populations, and we show that these populations can displace populations with any irreducible 

dispersal strategy. Collectively, these results support that evolution selects for natal or breeding dispersal 

strategies which lead to ideal-free distributions in spatially heterogenous, but temporally homogenous, 

environments. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Dispersal is an important aspect of the life histories of many if 

not most organisms. However, it was shown by Hastings [19] that 

selection generally favors slower rates of dispersal in spatially 

varying but temporally constant environments. This is an example 

of a widespread feature of spatial models in population dynamics 

and genetics known as the reduction phenomenon, which is that 

movement or mixing generally reduces growth [2] . Hastings con- 

sidered types of dispersal such as simple diffusion and symmetric 

discrete diffusion that did not allow organisms to perfectly match 

the distribution of resources in their environment. There are dis- 

persal strategies that do allow organisms to match the distribution 
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of resources in their environment, and it was shown by McPeek 

and Holt [28] in numerical experiments with discrete time models 

on two habitat patches that such strategies were favored by se- 

lection. At equilibrium the populations using those strategies had 

equal fitness in the two patches, which is one of the character- 

istics of an ideal free distribution. The ideal free distribution was 

introduced by Fretwell and Lucas [15] as a heuristic theory of how 

organisms would distribute themselves if individuals could assess 

their fitness in all locations and were free to move so as to opti- 

mize their fitness. In a population that is at equilibrium and has 

an ideal free distribution all individuals would have equal fitness 

and there would be no net movement of individuals, as a change 

in local densities would lead to a reduction of fitness for some in- 

dividuals. In the context of population models it is natural to use 

the per capita growth rate as a proxy for fitness, in which case the 

per-capita growth rates of all ideal-free individuals equal zero at 

equilibrium. This observation can be used to characterize the ideal 

free distribution in population models. It turns out that in many 
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modeling contexts ideal free dispersal strategies are evolutionarily 

stable in the sense that a population using one cannot be invaded 

by an ecologically similar population using a dispersal strategy that 

does not result in an ideal free distribution. 

In his dissertation, Altenberg [1] conjectured that strategies 

leading to an ideal free distribution would be evolutionarily stable. 

It turns out that is indeed the case in various types of models. One 

approach to modeling the evolution of dispersal, which we shall 

not pursue here, is based directly on game theory. The implica- 

tions of the ideal free distribution in that context are described in 

[4,11,25,26,34] . The approach that we will take is inspired by the 

theory of adaptive dynamics. We will consider models of popula- 

tions dispersing in patchy landscapes and perform what amounts 

to a pairwise invasibility analysis to compare different dispersal 

strategies. A dispersal strategy is evolutionarily stable if a popu- 

lation using it can resist invasion by other populations using other 

strategies. In fact, we will show that in many cases populations us- 

ing dispersal strategies leading to an ideal free distribution can ac- 

tually exclude ecologically similar competitors that are using other 

strategies. Results on the evolutionary stability of ideal free dis- 

persal have been obtained in various modeling contexts, includ- 

ing reaction-diffusion-advection equations [3,7,24] , discrete diffu- 

sion models [6,8,31] , nonlocal dispersal models [9,10] , and discrete 

time models [6,23] . All of these models, however, assume that indi- 

viduals are either semelparous, as in the case of the discrete-time 

models, or assume that individuals disperse throughout their life- 

time. 

In many species, dispersing prior to reproducing (natal disper- 

sal) is much more common than dispersing between successive re- 

productive events (breeding dispersal) [18] . Natal dispersal is the 

only mode of dispersal for sessile species such as plants with dis- 

persing seeds or sessile marine invertebrates with dispersing lar- 

vae. Many territorial species, such as birds or reef fish, often ex- 

hibit long natal dispersal distances and little or no dispersal after 

establishing a territory [16] . For example, Paradis et al. [32] found 

that the mean natal dispersal distance for 61 of 69 terrestrial bird 

species was greater than their mean breeding dispersal distance. 

For species exhibiting significant natal dispersal, the assumption of 

individuals dispersing throughout their lifetime is inappropriate. A 

more appropriate simplifying assumption is that these species only 

disperse a significant amount prior to reproduction and negligi- 

ble amounts after reproduction. Many continuous time metapop- 

ulation models [17,29] and discrete time models for iteroparous, as 

well as semelparous, populations [20,23] have a structure consis- 

tent with this assumption: individuals disperse between patches 

right after birth and settle on one patch for the remainder of their 

lifetime. 

In the present paper we will derive results on the evolution- 

ary stability of ideal free dispersal strategies for a general class 

of models accounting for natal dispersal. We begin by examining 

the structure of their equilibria and their global stability. The non- 

trivial equilibrium, when it exists, will be shown to exhibit a di- 

chotomy: per-capita growth rates are equal to zero in all patches 

(i.e. an ideal free distribution), or some individuals experience 

negative per-capita growth rates while others experience positive 

per-capita growth rates. We identify which density-independent 

dispersal strategies give rise to the ideal-free distributions under 

equilibrium conditions and show that populations employing these 

dispersal strategies exclude populations employing non-ideal free 

dispersal strategies. In the process, we verify a conjecture of Kirk- 

land et al. [23] and extend some of the results of that paper. Fur- 

thermore, we show that in models where some dispersing individ- 

uals are forced to disperse into patches only supporting negative 

per-capita growth rates (sink patches), there is selection for slower 

dispersal. (In such situations the only strategy that can produce an 

ideal free distribution is the strategy of no dispersal at all.) 

2. Sources, sinks, and single species dynamics 

2.1. The general model and assumptions 

We consider two types of models of populations in patchy en- 

vironments: (i) models which track population densities in a net- 

work of patches, and (ii) patch occupancy models which track 

the frequencies of occupied sites in a collection of patches, i.e. 

metapopulation models. For both models, we assume that individ- 

uals only disperse shortly after reproduction, e.g. plants via seeds, 

sessile marine invertebrates via larvae, territorial species such as 

reef fish, etc. For these types of organisms, individuals can ex- 

perience density- or frequency-dependence in three demographic 

phases: fecundity (pre-dispersal), settlement (post-dispersal), or 

survival (adults). Let u i ( t ) denote the population density or fre- 

quency in patch i at time t , where t ∈ [0, ∞ ) in continuous time 

and t = 0 , 1 , . . . in discrete time. Adults living in patch i produce 

offspring at a rate f i ( u i ) and experience mortality at a rate m i ( u i ). 

A fraction d ji of offspring disperse from patch i to patch j and only 

fraction s j ( u j ) of these offspring survive upon arriving in patch j . If 

there are n patches, then the governing equation for u i is given by 

�u i = s i (u i ) 
n ∑ 

j=1 

d i j f j (u j ) u j − m i (u i ) u i , 1 ≤ i ≤ n, (2.1) 

where �u i = 

du i 
dt 

in continuous time and �u i = u ′ 
i 
− u i in discrete 

time; u ′ 
i 

denotes the population density in patch i in the next time 

step, i.e. u ′ 
i 
(t) = u i (t + 1) . Denote R + = [0 , ∞ ) . Let S = R + for the 

population density models and S = [0 , 1] for the population fre- 

quency models. Then S n is the state space for the models. We 

make the following assumptions. 

(A1) Matrix ( d ij ) is non-negative, column stochastic, and irre- 

ducible in the continuous time case and primitive in the discrete 

time case. A square matrix is irreducible if it is not similar via a 

permutation to a block upper triangular matrix. A primitive ma- 

trix is a square nonnegative matrix some power of which is posi- 

tive. Biologically, no individuals are lost while dispersing and after 

enough generations, the descendants of an adult from patch i can 

be found in all patches. 

(A2) f i , s i : S → R + are continuous, positive, non-increasing 

functions, and m i : S → R + is continuous, positive, non-decreasing. 

Biologically, reproduction and survival rates decrease with popula- 

tion density, while mortality increases with density. 

(A3) u i f i (u i ) : S + → R + is strictly increasing. Biologically, as the 

population gets larger in patch i , the more offspring are produced 

by the population in patch i . In the discrete-time case, we require 

the stronger hypothesis that 

∂ 

∂u i 
( s i (u i ) d ii f i (u i ) + (1 − m i (u i )) u i ) > 0 for u i ∈ S, i = 1 , 2 , . . . , n. 

This stronger hypothesis is needed to ensure monotonicity of the 

discrete time population dynamics. 

For each i and population density u i , define 

g i (u i ) := 

s i (u i ) f i (u i ) 

m i (u i ) 
. (2.2) 

If the population density were held constant at u i , then g i ( u i ) 

equals the mean number of surviving offspring produced by an in- 

dividual remaining in patch i during its life time. Namely, g i ( u i ) is 

the reproductive number of individuals living in patch i with the 

fixed local density u i . Hence, we view g i ( u i ) as the fitness of an in- 

dividual remaining in patch i . By (A2) , g i are continuous, positive, 

decreasing functions. We make the following stronger assumption 

on g i : 

(A4) g i is strictly decreasing on S and lim u i →∞ 

g i (u i ) < 1 for the 

population density models and g i (1) < 1 for the population fre- 

quency models. Biologically, fitness within a patch decreases with 
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