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a b s t r a c t 

A biological dynamic system carries engineering properties such as control systems and signal processing 

(or image processing) addicted to molecular biology at the level of bio-molecular communication net- 

works. Dynamical system features and signal reply functions of cellular signaling pathways are some of 

the main topics in biological dynamic systems (for example the biological segmentation). In the present 

paper, we introduce new generalized hybrid time-space dynamical systems of growing bacteria. We im- 

pose the approximate analytic solution for the system. The generalization adapted the concepts of the 

Riemann–Liouville fractional operators for time and the Srivastava–Owa fractional operators for space. 

Moreover, we introduce a numerical perturbation method of two operators to obtain the approximate 

solutions. We establish the existence and uniqueness results and impose some applications in the sequel. 

Moreover, we study the Ulam stability and apply these stable solutions to improve the segmentation of a 

class of growing bacteria. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Fractional derivatives (real and complex) (see [1–3] ) can defi- 

nite the properties of memory and heredity of supplies. Applied 

problems involve characterizations of fractional derivatives letting 

the usage of initial conditions. Fractional time derivatives are as- 

sociated with fractional sub-diffusion, where particles feast more 

slowly than a classical diffusion. While the fractional space deriva- 

tives are utilized to model fractional diffusion or distribution, 

where particles feast at a rate not in agreement with the classi- 

cal Brownian motion model [4] . The biological models are char- 

acterized as discrete, continuum (time - space), or hybrid, which 

contain both discrete and continuum components. Discrete (e.g. 

agent- based or cellular automata) models characterize individual 

components repeatedly (e.g. cells), and can simply join biologi- 

cal rules for interactions or transitions (e.g. chemotaxis or hapto- 

taxis). Continuum models describe the continuous distribution of 
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supplies across the area (e.g. a tumor as a continuous medium of 

cells). While cells are reflex objects, this modeling background is 

sensible when seeing large populations of cells, and is particularly 

advantageous when involving chemical kinetics and diffusion sub- 

stances. Hybrid models combine the two methods, though typically 

with additional numerical contests to join the discrete to the con- 

tinuous illustrations. An early sample of a hybrid model is estab- 

lished in [5] , in which antigenic growth of capillaries from sprout 

tips is captured by a discrete biased random-walk type, whereas 

the responses of cells are represented as coupled reaction-diffusion 

equations. In general, a mathematical structure together with an 

interpretive rule is the main aim of the study. If the interpretive 

rule is missing the equations cannot be considered as a model and 

cannot tell anything about biology. One of these rules is by using 

the concept of the segmentation. In this paper, we introduce a new 

method of segmentation based on the solution of the dynamic sys- 

tem. 

In computer visualization, the image segmentation is the pro- 

cedure of dividing a digital image into multiple segments (sets 

of pixels). The purpose of segmentation is to simplify, modify 

and characterize the image into approximate image that is more 

expressive for analysis [6] . The segmentation usage is to realize 
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boundaries and pieces such as lines and curves in images. More 

precisely, the image segmentation is the technique of transmission 

a label to every pixel in an image such that pixels with the same 

label segment certain features. The outcome of image segmenta- 

tion is a set of segments that jointly cover the entire image, or a 

set of contours removed from the image. Fractional image segmen- 

tation has been studied in [7,8] , by applying some fractional formal 

such as the fractional non-Markov Poisson stochastic process and 

fractional sinc function respectively. 

Our aim is to introduce new generalized hybrid time-space dy- 

namical systems of growing bacteria. The generalization adapted 

the concepts of Riemann–Liouville fractional operators for time 

and Srivastava–Owa fractional operators for space. Moreover, we 

give a numerical perturbation method of the two operators to ob- 

tain the approximate solutions. We establish the existence and 

uniqueness results with applications. Also, we investigate the Ulam 

stability. Finally, by using these applications, we improve the seg- 

mentation of a class of growing bacteria (populations of cells). The 

proposed method shows high accuracy of segmentation comparing 

with formerly works. 

2. Processing methods 

In complex analysis, the Srivastava and Owa fractional operators 

are defined in z-plane C as follows (see [1] ): 

Definition 2.1. The non integer (fractional) derivative of order β is 

known, for a function f ( z ) in the expression 

D 

β
z f (z) := 

1 

�(1 − β) 

d 

dz 

∫ z 

0 

f ( ζ ) 

( z − ζ ) β
dζ ; 0 ≤ β < 1 , 

where the function f ( z ) is analytic in simply-connected region be- 

longing to C and containing the origin with the multiplicity of 

(z − ζ ) −β . The corresponding fractional integral of order β is for- 

mulated by 

I 
β
z f (z) := 

1 

�(β) 

∫ z 

0 

f (ζ )(z − ζ ) β−1 dζ ; β > 0 . 

The above calculus implies: 

D 

β
z z 

μ = 

�(β + 1) 

�(μ − β + 1) 
z μ−β, μ > −1 ; 0 ≤ β < 1 

and 

I 
β
z z 

μ = 

�(μ + 1) 

�(μ + β + 1) 
z μ+ β, μ > −1 ; β > 0 . 

In our investigation, the variable z = x + iy corresponds to the two 

dimensional space. While the time corresponds to the variable t . In 

this case, we need the Riemann–Liouville operators ( [2] ). 

Definition 2.2. The arbitrary order integral ( α > 0) of the function 

f is expressed by 

I αa f (t) = 

∫ t 

a 

(t − τ ) α−1 

�(α) 
f (τ ) dτ. 

The arbitrary order derivative (0 ≤α < 1) of the function f is de- 

fined by 

D 

α
a f (t) = 

d 

dt 

∫ t 

a 

(t − τ ) −α

�(1 − α) 
f ( τ ) d τ = 

d 

d t 
I 1 −α
a f (t) . 

The operators are achieved the following property: 

D 

αt μ = 

�(μ + 1) 

�(μ − α + 1) 
t μ−α, μ > −1 ; 0 < α < 1 

and 

I αt μ = 

�(μ + 1) 

�(μ + α + 1) 
t μ+ α, μ > −1 ; α > 0 . 

In this article, we consider the time-space fractional differential 

equation (Cauchy type) of the form 

D 

αD 

β
z u (t, z) = f (t, z, u ) (1) 

where u (0 , 0) = 0 in a neighborhood of the origin, t ∈ J := 

[0 , T ] , z ∈ U := { z ∈ C : | z| < 1 } , u : J × U → C and f : J × U × C is 

analytic function. Eq. (1) is a generalization of the population sys- 

tems in [9] . 

The most significant benefit of utilizing any class of fractional 

differential equations in mathematical modelling is their non-local 

property (see [10–12] ). Obviously, the integer order differential op- 

erator is a local operator while the fractional order differential 

operator is non-local. This leads to the next formal of a system 

depends not only upon its present state but also upon all of its 

historical statuses. These advantages make the field of fractional 

more and more popular in scientific and technological areas. Re- 

cently, different procedures employed to handle numerous biolog- 

ical problems. One of these methods is the homotopy technique. 

The homotopy analysis technique occurred for solving linear and 

nonlinear not only differential equations, but also integral equa- 

tions. Diverse from perturbation method, the homotopy analysis 

technique does not request any small or large parameters in the 

equations (see [13] ). 

Our aim is to study the existence and uniqueness of Eq. (1) . 

Furthermore, we introduce the homotopy perturbation method to 

get the analytic solution in a complex domain. We check our re- 

sults by using the Ulam stability of fractional order. We simulate 

generalized cases, by illustrating numerical examples. A compari- 

son between solutions is given to these special cases with com- 

putation of errors. We use these solutions, in term of the Mittag–

Leffler function to improve the segmentation of images containing 

growing bacteria. 

3. Findings 

Let J := [0 , T ] , � := J × U, B := CHB [ � × C , C ] be a complex Ba- 

nach space of all continuous, analytic and bounded functions in � 

endow with the max norm. We have the following result: 

Theorem 3.1. Assume that f ∈ B is a Lipschitz function in u ∈ 

CH(� , C ) (the space of continuous in J and analytic in U). Then (1) 

has a unique solution in a neighborhood of the origin (0,0) ∈ � pro- 

vided 

LT α

�(β + 1)�(α + 1) 
< 1 , L ∈ (0 , ∞ ) . 

Proof. Define the operator 

(P u )(t, z) := 

1 

�(β) 

∫ z 

0 

(z − ζ ) β−1 

[∫ t 

0 

(t − τ ) α−1 

�(α) 
f (τ, ζ , u ) dτ

]
dζ . 

Denotes the norm of the function f by ‖ f‖ B = 

max (t,z) ∈� 

| f (t, z, u ) | = M < ∞ . First, we show that P is bounded in 

a neighborhood of the origin (0,0) ∈ � 

| (P u )(t, z) | = | 1 

�(β) 

∫ z 

0 

(z − ζ ) β−1 

[∫ t 

0 

(t − τ ) α−1 

�(α) 
f (τ, ζ , u ) dτ

]
dζ | 

≤ | 1 

�(β) 

∫ z 

0 

(z − ζ ) β−1 
[ 

MT α

�(α + 1) 

] 
dζ | 

≤ MT α

�(β + 1)�(α + 1) 
. 

We proceed to prove that P is a contracting mapping. By the as- 

sumption we conclude that 

| (P u )(t, z) − (P v )(t, z) | 
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