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a b s t r a c t 

We present in this paper a new exact algorithm for improving performance of exact stochastic simulation 

algorithm. The algorithm is developed on concepts of the partial-propensity and the rejection-based ap- 

proaches. It factorizes the propensity bounds of reactions and groups factors by common reactant species 

for selecting next reaction firings. Our algorithm provides favorable computational advantages for sim- 

ulating of biochemical reaction networks by reducing the cost for selecting the next reaction firing to 

scale with the number of chemical species and avoiding expensive propensity updates during the simu- 

lation. We present the details of our new algorithm and benchmark it on concrete biological models to 

demonstrate its applicability and efficiency. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

The stochastic chemical kinetics is a promising framework to 

cope with complexities and randomnesses in understanding bi- 

ological systems [1–6] . A discrete population of each individual 

species is kept track. Interactions between species are represented 

by biochemical reactions. Each reaction has a probability to fire 

in the next infinitesimal time proportional to a propensity . The 

propensity of a reaction depends on population of species involved 

and reaction kinetics. The dynamical behavior of biochemical reac- 

tions is described by the chemical master equation (CME) [7] and 

its solution can be realized by an exact simulation procedure called 

the stochastic simulation algorithm (SSA) [8,9] . SSA is a Monte- 

Carlo simulation technique that randomly selects a reaction to fire 

and to move the system to a new state according to a probability 

distribution derived under the hypothesis of CME. 

The direct method (DM) and the first reaction method (FRM) 

[8] are the two well-known implementations of SSA. They are 

mathematically equivalent but differ in how to select the next re- 

action firing. FRM selects the reaction having the smallest putative 

time as the next reaction firing, while DM discovers the next reac- 

tion firing through a search. These basic algorithms, however, be- 

come computationally infeasible for practical models and many ef- 

ficient formulations of these algorithms are introduced to enhance 

their efficiency. The optimized direct method (ODM) [10] and the 

sorting direct method (SDM) [11] improve the search for next re- 

action firings of DM by sorting reactions based on their firing fre- 
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quencies. The multi-dimensional search is an attempt to reduce 

the computational time complexity of the search for next reaction 

firings by dividing reactions into groups [12] . The selection of re- 

action firing in the multi-dimensional search is composed of two 

steps: 1) selecting the group, then 2) locating the next reaction 

within that group. The finest strategy for grouping of reactions is 

when each group contains only two reactions which is equivalent 

to a tree structure where reactions are stored on its leaves. The 

search of the next reaction firing in this case is a tree traversal pro- 

cedure [13–16] . The SSA with composition-rejection search strategy 

(SSA-CR) [17,18] also groups reaction into groups, but the selection 

of the next reaction firing in a group employs a rejection-based 

sampling instead. The next reaction method (NRM) [19] is an al- 

ternative which focuses on improving FRM. It uses a binary heap 

to store and extract smallest (absolute) reaction firing times. Other 

improvements including approximate and parallel algorithms 

[20–25] are also introduced. 

The partial-propensity direct method (PDM) [26–29] and the 

rejection-based SSA (RSSA) [30–34] are two exact simulation ap- 

proaches that have been introduced recently to improve the per- 

formance of the stochastic simulation. They focus on different sim- 

ulation bottlenecks of SSA to improve the simulation performance. 

The former improves the search for next reaction firings, while the 

latter reduces the propensity updates after reaction firings. PDM 

introduces the concept of partial propensity function to factorize 

propensities of reactions. The factors are grouped by common re- 

actants in a so-called partial propensity structure . The search for the 

next reaction firing using the partial propensity data structure is 

done by first sampling the group index and then the element index 
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at which the partial propensity of the reaction is stored. The vari- 

ants of PDM including the sorting PDM (SPDM) [26] , the PDM with 

composition-rejection search (PSSA-CR) [27] are also introduced to 

improve the selection of the next reaction firing. The current limi- 

tation of PDM is that it is only applicable to the class of reactions 

involving at most two reactants (i.e., elementary reactions ) and their 

propensities must be factorizable (i.e., mass-action propensity) [26] . 

The network that contains non-elementary reactions must be de- 

composed into elementary ones at the expense of increasing net- 

work size. On the other side, RSSA focuses on reducing the av- 

erage number of propensity updates during the simulation. The 

propensity of each reaction in RSSA is abstracted into an interval 

denoted by a pair of propensity lower bound and upper bound. 

The propensity bounds of reactions are derived by specifying an 

arbitrary bound on the population of each species, which is called 

fluctuation interval (or abstract state ). RSSA selects the next reac- 

tion firings using the propensity bounds in two steps. First, a can- 

didate reaction is randomly selected proportionally to its propen- 

sity upper bound. Then, a rejection-based test on the candidate is 

performed to ensure that it fires with the same probability deter- 

mined by SSA. After the state is updated by the reaction firing, 

a new selection is performed without recomputing the propen- 

sity bounds except in uncommon cases where the population of 

a species exits its fluctuation interval. 

We present in this paper a new exact simulation algorithm, 

which is called the partial-propensity rejection-based SSA (PRSSA), 

to offer the computational advantages of the partial-propensity and 

rejection-based approaches. Our algorithm applies the principle of 

the rejection-based approach on the concept of partial propensity 

to define partial propensity bounds for reactions, then factorizes 

the propensity bounds of reactions by using the interval analysis 

[35] . Based on such factorization, PRSSA groups the partial propen- 

sity bounds of reactions having sharing reactants. The grouping 

of partial propensity bounds is then used by PRSSA to select the 

next reaction firing. By employing partial propensity bounds of re- 

actions for the selection of next reaction firings, PRSSA reduces 

its computational cost for selection of the next reaction firing to 

scale with the number of species while skipping many expensive 

propensity updates during the simulation. Our new algorithm pro- 

vides a favorable computational complexity for the simulation of 

reaction networks where the number of reactions is much larger 

than the number of species and the number of reactions that need 

updates their propensities when a reaction firing is large. 

The paper is organized as follows. Section 2 provides the 

background of stochastic simulation of biochemical reactions. 

Section 3 presents our new PRSSA algorithm. We describe in de- 

tail how to combine rejection-based approach and the concept of 

partial-propensity function to select the next reaction firing in or- 

der to reduce the computation cost of SSA. Section 4 shows the 

numerical results of our algorithm on concrete models acting as 

benchmarks to demonstrate the applicability and efficiency with 

respect to the state of the art algorithms. The concluding remarks 

are in Section 5 . 

2. Stochastic simulation 

We consider a well-mixed biochemical reaction network con- 

sisting of N molecular species S i for i = 1 . . . N. Let X i ( t ) be the 

absolute number denoting the population of species S i at time 

t . The state of the system at the time t is a N -vector X(t) = 

(X 1 (t) , . . . , X N (t)) that shows the population of each species in the 

system at the time. 

Species can interact with each other through M reactions R j for 

j = 1 . . . M. A reaction R j between species has a general form: 

R j : v −1 j S 1 + . . . + v −
n j 

S n 
c j → v + 

1 j 
S 1 + . . . + v + 

n j 
S n (1) 

where c j is the stochastic reaction constant [1,9,36] . The species on 

the left side of the arrow are reactants , while the ones on the 

right side are products . The non-negative integer v −
i j 

and v + 
i j 

called 

stoichiometric coefficients give the number of molecules a reactant 

consumed and the number of molecules a product produced. The 

N -vector v j , where the i th element is v i j = v + 
i j 

− v −
i j 

represents the 

changes in the population species S i due to the firing of R j , is the 

state change vector. The vector v j denotes the net change in pop- 

ulation of each species when firing R j . Formally, if reaction R j fires 

at time t + τ, given the state X ( t ) at time t , then the system jumps 

to a new state X(t + τ ) = X(t) + v j . 
Each reaction R j has a probability to fire in the next infinites- 

imal time that is proportional to a propensity a j . The propensity 

function a j is defined so that a j ( X ( t )) dt gives the probability that 

the reaction R j fires in the next infinitesimal time t + dt given the 

system state X ( t ) at time t . An explicit formula of the propensity of 

a reaction on the state is depending on the chemical kinetics. For 

the mass-action kinetics, propensity a j of a reaction R j is defined 

as: 

a j (X (t)) = c j h j (X (t)) (2) 

where h j ( X ( t )) counts the number of distinct combinations of reac- 

tants involved in R j and c j is its stochastic reaction constant. The 

number of combinations of reactants of a synthesis reaction , which 

is used to introduce new molecular species into the system from 

an external source, is set h j (X(t)) = 1 . 

The mathematical framework of the stochastic simulation is the 

joint probability density function (pdf) p ( τ , μ) which is defined 

such that p ( τ , μ) d τ gives the probability that a reaction fires in the 

next infinitesimal time interval [ t + τ, t + τ + dτ ) and it is reaction 

R μ, given the state X ( t ) at time t . The analytical formula of p ( τ , μ) 

is given as: 

p(τ, μ) = a μexp(−a 0 τ ) (3) 

where a 0 = 

∑ M 

j=1 a j . 

The stochastic simulation algorithm (SSA) is a class of exact al- 

gorithm for sampling the pdf p ( τ , μ) in Eq. (3) by using an obser- 

vation that the probability that reaction R μ occurs in the next time 

t + τ follows a discrete probability distribution a μ/ a 0 and the fir- 

ing time τ is an exponential distribution Exp (a 0 ) . So, to construct 

a simulation trajectory of the reaction network, SSA repeatedly se- 

lects the next reaction firing R μ with probability a μ/ a 0 and gen- 

erates its firing time τ from the exponential distribution Exp (a 0 ) . 

It then advances the time by an amount τ and updates the state 

accordingly to the selected reaction R μ. The propensities of reac- 

tions are updated as well to reflect changes in the system state. 

These simulation steps are repeated until a predefined ending time 

is reached. 

3. Partial-propensity rejection-based SSA 

This section presents the partial-propensity rejection-based SSA 

(PRSSA) for improving the performance of exact stochastic sim- 

ulation of biochemical reactions. We first cover the backgrounds 

on the rejection-based and partial-propensity approaches. Then, 

we use these concepts to derive and group the partial propensity 

bounds of reactions. We present the data structures and the de- 

tailed implementations of our new algorithm. Employing such data 

structures, the selection of reaction firings in PRSSA is scaled with 

the number of species while propensity updates are avoided dur- 

ing the simulation. 

3.1. Background on rejection-based SSA 

The rejection-based stochastic simulation algorithm (RSSA) 

[31] is an exact simulation with the aim to reduce the average 
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