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a b s t r a c t 

Several models have been proposed to describe the behavior of ants when moving from nest to food 

sources. Most of these studies where based on numerical simulations with no mathematical justifica- 

tion. In this paper, we propose a mechanism for the formation of paths of minimal length between two 

points by a collection of individuals undergoing reinforced random walks taking into account not only 

the lengths of the paths but also the angles (connected to the preference of ants to move along straight 

lines). Our model involves reinforcement (pheromone accumulation), persistence (tendency to preferably 

follow straight directions in absence of any external effect) and takes into account the bifurcation angles 

of each edge (represented by a probability of willingness of choosing the path with the smallest angle). 

We describe analytically the results for 2 ants and different path lengths and numerical simulations for 

several ants. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

One of the most interesting problems in mathematical biol- 

ogy is the study of the mechanisms employed by the multiple 

parts composing a biological system to create a collective self- 

organized behavior (see the books [3,6] and [30] ). Not only dif- 

ferent groups of animals such as ant colonies [13,18,32] or fish 

schools [22,23] exhibit this coordinated behavior but also human 

crowds [16,17] . Due to the complexity underlying such collective 

systems, it is necessary to understand well and to identify the key 

factors of the mechanism. For this reason the development of theo- 

retical methodologies to study complex biological systems is a very 

active area of research and a rich source of new and interesting 

mathematical problems. In the last years, many studies about ani- 

mal transportation networks have been performed focusing on dif- 

ferent aspects such as topological properties of networks, network 

morphogenesis and growth, and behavior of network’s users (for a 

complete explanation see the review article [26] ). 

For the particular case of ant colonies, several problems related 

to the formation of trail networks created by multiple species of 

ants have been studied [1,2,8,10,19] . Their patterns that can extend 
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up to a hundred meters from the nest result from the collective 

activity of thousands of individual workers laying and following 

pheromone trails as they forage their environment. Some previous 

studies show the efficient exploitation of resources by these lim- 

ited individuals [4,8,10,12,26,34] . Although some species seem to 

have developed theoretically optimal tree-like networks, in some 

cases cycles are observed in the rooted foraging networks increas- 

ing the robustness of the network [7,20] . Our goal is to understand 

how can a group of cognitively limited individuals, with access to 

partial and local information only, build such efficient, large scale 

structures. From a mathematical point of view, we want to find out 

the minimal set of rules that a model must incorporate to give rise 

to networks similar to those of ant colonies. This question can be 

extended to other self-organized network systems, such as the gal- 

leries of ant nests [27] , but also trail systems created by humans 

[15,17] . 

Several experimental and theoretical studies have been per- 

formed in order to solve this question. It has been investigated 

the individual and collective behavior of Argentine ants ( Linep- 

ithema humile ) when navigating graphs [13,25,33,34] and also 

the behavior of Lasius niger ants when bifurcation asymmetries 

are present [14] . In [31] several experiments were conducted 

with three different ant species to explore their responses to 

varying concentrations of pheromone in order to understand the 

importance of this parameter in the mathematical models. All 
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Fig. 1. A simple graph with two nodes. 

these studies suggest that a mechanism for the formation of ant 

trails should include an attractive, durable signal (pheromone) 

as well as motion persistence, that is, the tendency to move 

straight in the absence of external information. These two factors 

have consequences for colony-level path selection, allowing ant 

colonies to efficiently choose shorter paths to food sources [11,33] . 

This kind of motion is known in the mathematical literature as 

reinforced random walk [9,21,24] and it is sufficient to reproduce 

the individual and collective movement patterns of ants on graphs 

[33] . The role of persistence has been stressed in other biological 

contexts, such as the motion of cells [28,29] . 

In a recent study, Vela-Pérez et al. [33] investigated the models 

of shortest path selection by ants that travel between two points: 

the nest and the food source. In particular, two simple graphs were 

considered: with two and with three nodes, being the last case 

equivalent to a two node network with a long path of length two. 

In the simplest two-node graph (see Fig. 1 ) it was considered that 

the length of both paths is the same (i.e. l 1 = l 2 ). Moreover, it was 

assumed that the probability of the path selection only depends 

on the pheromone concentration. However, when making a deci- 

sion, ants have to decide between two or more conflicting informa- 

tion sources or environmental effects and hence several options are 

open to them. Our goal is to investigate the influence of different 

path lengths and different angles in a bifurcation point, which ex- 

tends the analysis performed in [33] . As it was proved experimen- 

tally for Lasius niger ants [14] , ants preferentially follow the branch 

deviating least from straight and this effect increases as asymme- 

try increases in bifurcation points. Therefore, we consider an addi- 

tional factor of path selection connected with angles β1 and β2 in 

order to study this mathematically. 

The paper is organized as follows: in Section 2 we present an- 

alytical results related to the asymptotic dynamics in the case of 

two node networks. In Section 3 , we describe the behavior for 

early time dynamics for the case of two node networks with edges 

of different lengths and different bifurcation angles with two ants. 

In Section 4 , we present some numerical results for several ants in 

two node networks with edges of different lengths and different 

bifurcation angles. In Section 5 , we summarize the final conclu- 

sions. 

2. Mathematical analysis of two nodes network with one ant 

Firstly, we investigate the asymptotic distribution of pheromone 

on the edges. Without lost of generality we may assume that l 2 = 1 

and l 1 = L . We also make the following assumptions: 

(1) ants move with a constant speed; 

(2) only one ant travels between nest and food source; that is 

the ant has to return to the nest before the next ant departs; 

(3) ants deposit pheromone uniformly; 

(4) the path selection is done in terms of pheromone concen- 

tration and the angle of the path; 

(5) the graph is symmetric, that is the angles of a given path 

near the nest and the food source are the same. 

The amount of the pheromone on each graph’s edge depends 

on the number of ants that followed the edge and the length of 

the path. We denote the amount of pheromone on an edge j = 

1 , 2 at time t by ω j ( t ). Following the idea presented in [33] , we 

assume that the probabilities p j , j = 1 , 2 of choosing edge j are the 

following: 

p 1 (t) = 

q 
(
k + 

ω 1 (t) 
L 

)α

q 
(
k + 

ω 1 (t) 
L 

)α + (1 − q ) ( k + ω 2 (t) ) 
α

, (2.1a) 

p 2 (t) = 

(1 − q ) ( k + ω 2 (t) ) 
α

q 
(
k + 

ω 1 (t) 
L 

)α + (1 − q ) ( k + ω 2 (t) ) 
α

, (2.1b) 

where k is a pheromone detection threshold and α is a non- 

linearity coefficient. A high value of α means that even if one 

branch has only slightly more pheromone than the other, the ant 

will have a larger probability of choosing it. If α= 1 the ants react 

in a linear, proportional way to pheromone concentration. The pa- 

rameter k acts as a threshold for response to pheromone. For larger 

values of k , more marking is necessary for the choice to become 

significantly non-random (see [5–13] ). The value of ω 1 ( t ) (respec- 

tively ω 2 ( t )) is increased in one unit each time the ant moves along 

the correspondent edge, representing the deposit of pheromone by 

the ant. Ants move one step at each time interval �t that can be 

taken, without loss of generality, as �t = 1 . 

The probability q reflects the willingness of choosing the first 

path because of the angle. Thus, q is a function of β1 and β2 . 

However, the precise formula of the function is neither known nor 

needed, and q can be treated as a parameter. It is reasonable to 

assume that q (β, β) = 1 / 2 , q > 1/2 for β1 > β2 and q < 1/2 for 

β1 < β2 . We also assume that the probability q is the same at the 

bifurcation points near the nest and near the food source. 

2.1. Long time behavior 

In order to simplify the arguments we assume that ants de- 

part from the nest every time unit. This unit has to be taken large 

enough in order to allow the ant to reach food source and return 

to the nest by any edge. This assumption is not very important 

since we neglect pheromone evaporation. On the other hand, we 

will show later that the assumption that only one ant is traveling 

through the graph is extremely important. 

It is easy to see, that 

ω 1 (t + 1) − ω 1 (t) = Lp 1 , 

ω 2 (t + 1) − ω 2 (t) = p 2 . (2.2) 

Clearly the concentrations of pheromone on each edge are stochas- 

tic processes. Thus, summing over all possible realizations of the 

stochastic processes we calculate the expectations values of ω 1 and 

ω 2 and denoting them by 〈 ω 1 〉 ( t ) and 〈 ω 1 〉 ( t ), respectively, we ob- 

tain from (2.2) the equations 

〈 ω 1 〉 (t + 1) − 〈 ω 1 〉 (t) = L 〈 p 1 〉 , 
〈 ω 2 〉 (t + 1) − 〈 ω 2 〉 (t) = 〈 p 2 〉 , (2.3) 

where 〈 x 〉 denotes the expectation of x . 

We are interested here in the distribution of pheromone after 

a long time. If the amount of pheromone deposited by a single ant 

is of order O (1) then after N time units the value of ω j , j = 1 , 2 
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