
Mathematical Biosciences 285 (2017) 61–67 

Contents lists available at ScienceDirect 

Mathematical Biosciences 

journal homepage: www.elsevier.com/locate/mbs 

A generalization of Kingman’s model of selection and mutation and 

the Lenski experiment 

Linglong Yuan 

1 

Institut für Mathematik, Johannes-Gutenberg-Universität Mainz, Staudingerweg 9, 55099 Mainz, Germany 

a r t i c l e i n f o 

Article history: 

Received 19 September 2016 

Revised 18 December 2016 

Accepted 20 December 2016 

Available online 23 December 2016 

92D19 

37N25 

60F05 

92D15 

Keywords: 

Selection-mutation balance 

House of cards 

Type distribution 

Fitness function 

Lenski experiment 

Escherichia coli 

a b s t r a c t 

Kingman’s model of selection and mutation studies the limit type value distribution in an asexual popu- 

lation of discrete generations and infinite size undergoing selection and mutation. This paper generalizes 

the model to analyze the long-term evolution of Escherichia. coli in Lenski experiment. Weak assump- 

tions for fitness functions are proposed and the mutation mechanism is the same as in Kingman’s model. 

General macroscopic epistasis are designable through fitness functions. Convergence to the unique limit 

type distribution is obtained. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Evolutionary forces in a population vary from macroscopic scale 

to microscopic scale including random environment, migration, 

natural selection, macroscopic epistasis (or individual interaction), 

microscopic epistasis, and linkage and dominance, clonal inter- 

ference, mutation, genetic drift, recombination, and so on. Re- 

cently, mathematicians are interested in incorporating as many fac- 

tors as possible in an evolutionary model, either deterministic or 

stochastic, to understand the contribution of each factor and to 

see which state the model can reach in the limit (see for exam- 

ple [4,5,15] among numerous works). However one would expect 

a high level of complexity of modelling and analysis when many 

factors enter into play. 

Kingman [10] suggested that one can regard an equilibrium 

of the evolutionary model as existing because of two preponder- 

ant factors, other phenomena causing perturbations of the equilib- 

rium. The pair of factors in his model are selection and mutation. 
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This particular case had also been the subject of study of Moran 

[12–14] almost at the same time. 

More specifically, Kingman [10] proposed a one-locus, discrete 

generation model under selection and mutation with an infinite 

number of possible alleles which have continuous effects on a 

quantitative type. The continuum-of-alleles models were intro- 

duced by Crow and Kimura [6] and Kimura [9] and are used fre- 

quently in quantitative genetics, since types usually have a polyge- 

netic basis. 

Kingman’s idea can be applied to model the Lenski experiment 

which investigates the long term evolution of E.coli in the labora- 

tory. Indeed, the application goes to various evolutionary models 

and one major parameter is how selection influences the popula- 

tion. That generates many variants of Kingman’s model and a gen- 

eral treatment is required. 

The paper aims to establish a general model which covers the 

Kingman’s setting and can be applied to Lenski experiment. In 

Section 2 , we show briefly the Kingman’s model and the main ob- 

servations in Lenski experiment. This section is the motivation of 

the paper, but the reader can skip it for the first reading since we 

will come back for applications. In Section 3 , we introduce a gen- 

eral setting with 3 assumptions on the fitness function. We give 

the main results for the general model when some or all assump- 

tions hold. Section 4 is devoted to proofs and in Section 5 , we 
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show the applications to Kingman’s model and Lenski experiment. 

Section 6 summarizes the main contribution of the paper and dis- 

cusses the comparison of our model with other works, especially 

with [8] on Lenski experiment. 

2. Kingman’s model and Lenski experiment 

2.1. Kingman’s model 

The model considers an effectively infinite population that re- 

produces asexually and has discrete generations. It studies a spe- 

cific type and the selection influences the population through the 

fitness which is the offspring size and depends (possibly not only) 

on its type value x , a real number in the space M := [0 , M] ⊂ R 

+ 
0 

where M is a positive real number. Let P (M ) denote the set of 

probability measures on M . For any u ∈ P (M ) , let m u denote the 

upper limit of the support of u , i.e., m u = sup { x : x ∈ M , u ([ x −
ε, x ]) > 0 , ∀ 0 < ε < x } . So m u is the largest type value an individual 

can take in a population with type distribution u . 

Assume that each individual per generation mutates indepen- 

dently with probability β (0 < β < 1) and the mutant type distri- 

bution is the probability measure q on M , independent of parent’s 

type. Kingman [10,11] argued that the tendency for most mutations 

to be deleterious might be reflected in a model in which the gene 

after mutation is independent of that before, the mutation having 

destroyed the biochemical “house of card” built up by evolution. 

The fitness function in this model is x �→ x, x ∈ M . Let ( p i ) i ≥ 0 

denote the sequence of type distributions of generations i on M 

with p 0 given as a parameter; Then ( p i ) i ≥ 0 are defined recursively: 

p i (dx ) = (1 − β) 
xp i −1 (dx ) ∫ 
xp i −1 (dx ) 

+ βq (dx ) , i ≥ 1 . (1) 

In particular, we set p i (dx ) = (1 − β) p i −1 (dx ) + βq (dx ) , if 

p i −1 = δ0 , the Dirac measure at 0. 

Remark 1. Due to the expression of (1) , it is clear that m p i ≤
max { m p 0 , m q } for any i ≥ 0. So letting M = max { m p 0 , m q } and 

M = [0 , max { m p 0 , m q } ] does not change any p i . Since m q ≤ m p 1 , 

one can assume m q ≤ m p 0 , otherwise we take p 1 as p 0 . For con- 

venience, we introduce: 

Convention ( ∗): 

m q ≤ m p 0 , M = m p 0 and M = [0 , m p 0 ] . 

If a sequence of measures (not necessarily probability mea- 

sures) ( h i ) i ≥ 0 conv erg es in t otal variation sense t o a measur e h , 

that is, the total variation of h i − h tending to 0, then for abbrevia- 

tion, we say ( h i ) i ≥ 0 converges strongly to h . 

Kingman specifically takes M = 1 in his model. Based on the 

value of 
∫ q (dx ) 

1 −x , Kingman [10] proved that: 

Theorem 1. (Kingman) Case 1: 
∫ q (dx ) 

1 −x > β−1 . Then ( p i ) i ≥ 0 con- 

verges strongly to 

p ∗(dx ) = 

βsq (dx ) 

s − (1 − β) x 
, 

with s being the unique solution of 
∫ βsq (dx ) 

s −(1 −β) x 
= 1 . 

Case 2: 
∫ q (dx ) 

1 −x ≤ β−1 . Then ( p i ) i ≥ 0 converges weakly to 

p ∗(dx ) = 

βq (dx ) 

1 − x 
+ ( 1 −

∫ 
βq ( dy ) 

1 − y 
) δ1 ( dx ) , 

here δ1 ( dx ) is the Dirac measure at 1. 

Therefore the sequence ( p i ) i ≥ 0 converges at least in the weak 

sense to a limit distribution p ∗ which depends only on q and β , 

regardless of the specific form of p 0 . Biologically, it can be seen as 

a stability property of the population. 

Next we introduce the Lenski experiment and use an iteration 

similar to (1) to model the evolution of E.coli. 

2.2. Lenski experiment and modelling 

The Lenski experiment is a long-term evolution experiment 

with E.coli, founded by Richard E. Lenski in 1988 in the laboratory. 

The experiment is decomposed into daily cycles . Every day starts 

by sampling approximately 5 · 10 6 bacteria from those available in 

the medium that was used the previous day. This sample is then 

transferred to a new glucose-limited minimal medium and repro- 

duce (asexually) until the medium is deployed, i.e., when there is 

no more glucose available. Around 5 · 10 8 cells are present at the 

end of each day. So the size grows by approximatively 100 times 

from the beginning of a day to the end and a sample of percentage 

around 1% will be chosen for the next day. The closely 30-year on- 

going experiment has run more than 60,0 0 0 generations. We refer 

to [8] for a more detailed presentation and references therein. 

There are 12 populations founded from a common ancestor. 

Samples, called by Lenski “fossil record”, are frozen every 500 gen- 

erations. Once bacterium is frozen, we consider it stopping bio- 

logical activities inside the body, which is how the name “fossil 

record” makes sense. The records are regarded as stocked informa- 

tion of evolutionary trajectories of populations. 

They define the fitness as the dimensionless ratio of the com- 

petitors’ realized reproduction rates. Basically, we let two popula- 

tions of the same number of individuals, one of the founder ances- 

tors and one of evolved strain, to be together in a medium at the 

beginning of a day. The fitness of the evolved strain is the ratio of 

the (exponential) reproduction rate of the strain observed at the 

end of the day and the reproduction rate of the ancestor strain. So 

in this definition, fitness is a relative quantity that measures the re- 

production rate of the whole population. However mathematically, 

one can directly model the natural (non-relative) reproduction rate 

of each bacterium. To unify notations, we shall consider the nat- 

ural reproduction rate as the type and our fitness, different from 

that of Lenski, is the offspring size in the next generation. 

Wiser et al. [16] showed that the (relative) reproduction rate in- 

creases but decelerates. They compared the hyperbolic and sublin- 

ear power law increasing models, the former having a bound and 

the latter none. It turns out that the hyperbolic model fits to the 

first 10,0 0 0 generations, but for a long term about 50,0 0 0 genera- 

tions, the sublinear power law model is more significant. 

The unboundedness of the sublinear power law curve can be 

explained by the fact that highly beneficial mutations happen 

rarely but consistently and with probability 1 some of them fixate 

the population, although after a probably very long time. There- 

fore, on a very long period of time, one can consider that there 

is a bound (or even a pattern) for the reproduction rates of new 

mutants. 

More specifically, let p 0 be the initial type distribution (or re- 

production rate distribution) and q the mutant type distribution 

such that 0 ≤ m q ≤ m p 0 < ∞ . Let M, M be defined from p 0 , q by 

convention ( ∗). Let the population grow exponentially according 

to the reproduction rate of each individual until the total amount 

reaches the capacity γ ( γ > 1) (assuming the initial amount 1). In 

Lenski experiment, γ ≈ 100. We then sample 1/ γ proportion of 

the population at the end of day 0 to constitute the population at 

the beginning of day 1. However, we have new mutants arriving 

along the whole day. To combine the mutation and selection to- 

gether, we assume that a β(0 < β < 1) proportion of the sample 

consists of mutation population with type distribution q and the 

rest 1 − β proportion stays unchanged. For any u ∈ P (M ) , let t u be 

the unique solution of 
∫ 

e t u x u (dx ) = γ . The type distribution p i at 
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