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a b s t r a c t 

An unstructured model for the growth of yeast cell on glucose due to growth inhibitions by substrate, 

products, and cell density is discussed. The proposed model describes the dynamical behavior of fermen- 

tation system that shows multiple steady states for a certain regime of operating parameters such as 

inlet glucose and dilution rate. Two types of steady state solutions are found, namely washout and non- 

washout solutions. Furthermore, different numerical impositions to the two parameters put in evidence 

three results regarding non-washout solution: a unique locally stable non-washout solution, a unique lo- 

cally stable non-washout solution towards which other nearby solutions exhibit damped oscillations, and 

multiple non-washout solutions where one is locally stable while the other is unstable. It is also found 

an optimal inlet glucose which produces the highest cell and ethanol concentration. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Fermentation is a microbial process that can be viewed as a 

complex dynamical system. It consists of intracellular and extra- 

cellular systems whose properties are uniquely determined by the 

yeast engineered in the process. Saccharomyces cerevisiae , the well- 

known ethanol producer, is one of the typical yeasts used in fer- 

mentation processes. It has been studied comprehensively using 

modeling approaches that spin around its optimal operating con- 

ditions. For the interest in some more details we refer to Astudillo 

and Alzate [2] who presented an excellent review about such opti- 

mal operating conditions. Given empirical measurement data, it is 

always of particular interest to perform calculations over the opti- 

mal conditions under which a Saccharomyces cerevisiae engineered 

fermentation operates well. 

Mathematical modeling is one of the useful tools that can be 

applied to determine optimal conditions of a fermentation system. 

In modeling biochemical processes, the advances can be classified 
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into unstructured and structured models. An unstructured model 

captures the dynamics of yeast cells from time to time in the con- 

centration unit–the group of the cells can thus be viewed as a sin- 

gle species in a solution. It has been developed to study an ex- 

tracellular fermentation system without considering the metabolic 

process within a cell [5,8,13] . A structured model focuses more on 

the metabolic structure of a yeast cell including the chemical pro- 

cesses (enzymatic reactions) within the cell [6,7,12,14,16–18,20,28] . 

When looking more at an unstructured model, the dynamical 

behavior of yeasts, products, and substrate in a fermentation pro- 

cess is an important feature to be explored. It amounts to pro- 

vide important information regarding the transient as well as the 

asymptotic behavior of the system that possibly becomes a guid- 

ance for experimentalists. As a matter of observation, every sta- 

ble steady state solution is characterized by a unique experimen- 

tal condition. From the economic point of view, finding one steady 

state solution is usually more desirable [29] . Related to this, bi- 

furcation analysis can be a powerful tool to reveal the asymptotic 

behavior of the solution of a mathematical model based on a com- 

plex system such as fermentation process (see e.g. [11,24] for the 

details about bifurcation analysis of models based on ordinary dif- 

ferential equations). It predicts the response of the model system 
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in the long run under small changes in the values of some param- 

eters. In practice, the prediction can be utilized as a guidance to 

formulate an optimal regulation that improves the growth of the 

yeast cells. 

Some researchers have come up with continuous unstructured 

models for yeast cells whose solutions exhibit unusual dynami- 

cal behavior such as damped oscillations or converging to multiple 

steady state solutions [2,6,8,12,20,29–31] . This behavior, mainly in- 

fluenced by inhibitions from the substrate (glucose) and products 

(ethanol and acetate), directly affects the ethanol production and 

culture operability. Furthermore, it has also been shown that the 

concentration of yeast cells becomes another inhibitor when an ex- 

tremely high concentration is reached [4,19,25] . New line, among 

the aforementioned modeling studies, the relatively high concen- 

tration of yeast cells has not yet been considered as another in- 

hibitor beside the substrate and products. Here we introduce the 

notion of carrying capacity for the concentration of yeast cells in 

our model to study its inhibiting effects to the growth of the cells 

and products formation. We then take into consideration which 

ranges of some parameters give which asymptotical behavior of 

the model solution in the long run. This theoretical exploration can 

be considered as a guidance in selecting the optimal condition to- 

wards which a real experiment can be designed and controlled to 

produce an optimal yield of the products. 

We organize the rest of the paper as follows. In Section 2 , 

we present several assumptions underlying the formulation of our 

model. In Section 3 , we discuss the conditions for the existence of 

multiple steady state solutions, the stability and bifurcation anal- 

ysis of the overall steady state solutions, and effects of increasing 

the cells’ carrying capacity and substrate efficiency on the yield of 

the products. A summary and some concluding remarks are pre- 

sented in Section 4 . 

2. Model formulation 

Let C ( t ), G ( t ), E ( t ), A ( t ) respectively denote the concentrations of 

yeast cells, substrate (glucose), ethanol, and acetate in a culture at 

time t . All the concentrations are measured in gram per liter (gl −1 ) 

and time is measured in hour (h). We preliminary assume that the 

growth rate of C is influenced by the availability of the substrate 

G . Therefore, the inflow in the concentration C from time to time 

based on this growth is given by 

f c = μC, (1) 

where μ denotes the specific growth rate of yeast cells, 

μ = 

μmax G 

G + θ
. (2) 

The last specific formula for μ follows the Monod equation 

[22] that models the response of the growth rate of yeast cells to 

the glucose concentration as the life support. The parameters μmax 

and θ respectively stand for the maximum specific growth rate for 

the yeast cells (in h 

−1 ) to which μ tends to μmax when the sub- 

strate G is too abundant (i.e. G � θ ) and the magnitude of G when 

μ/ μmax is proportional to 0.5 (in gl −1 ). 

The next assumption advocates the idea that the growth of 

yeast cells stops (completely inhibited) as the concentrations of the 

substrate and the two products equal to what we refer to as the 

measurable saturated concentrations , denoted by G crit , E crit , and A crit 

(in gl −1 ) with 0 ≤ G ≤ G crit , 0 ≤ E ≤ E crit , and 0 ≤ A ≤ A crit . The 

growth rate of yeast cells as in (2) can now be corrected as 

μ = 

μmax G 

G + θ

(
1 − G 

G crit 

)(
1 − E 

E crit 

)(
1 − A 

A crit 

)
, (3) 

where all the aforementioned inhibition factors are lumped to- 

gether. Here, we assume that the order of inhibitions is equal 

to one (linear decrease in rate constant as substrate and prod- 

ucts build up, [21] ). Note that the inhibition pattern as formulated 

in (3) is similar to the non-competitive enzyme inhibition as in 

[21,27] . 

Moreover, the notion of carrying capacity for the lone C is also 

taken into account in this modeling. This assumption is based on 

several experimental results, which found that the concentration 

of yeast cells itself can become another inhibitor for the growth 

when an extremely high level is reached [4,19,25] . This idea bears 

the use of another parameter C crit denoting the carrying capacity 

of C with 0 ≤ C ≤ C crit , i.e. the maximum concentration level of 

yeast cells the observed culture can accommodate [4,15,27] . This 

assumption leads to the following correction to (1) in conjunction 

with (3) : 

f c = μC 

(
1 − C 

C crit 

)
. (4) 

We assume that the only glucose is supplied to the system con- 

tinuously. The rate of glucose supply is assumed to be constant per 

time unit, i.e. 

f s = ρG s , (5) 

where G s denotes the inlet glucose defined in an interval 0 < G s ≤
G u given G u the maximum inlet glucose , and ρ is the dilution rate of 

glucose in the culture. This parameter ρ merely is defined as the 

volumetric flow rate of glucose supplied to the culture divided by 

the volume of the culture, i.e. 0 < ρ < 1. Experimentally, adjust- 

ing this parameter allows one to control the growth of yeast cells 

besides controlling the temperature, pH, or the oxygen level in the 

culture [20] . 

Furthermore, the rate of glucose consumption is given as fol- 

lows: 

f g = 

1 

Y cg 
f c + uC, (6) 

where Y cg is the so-called yield factor describing the maximum 

possible yield of the yeast cells C on the given glucose G during 

the observation period, and u is the specific uptake rate of sub- 

strate. The taken substrate is then converted to become energy that 

is used, for instances, to repair damaged cellular components and 

to transfer some other nutrients and products into and out of the 

cells [27] . The rates of ethanol and acetate formations are respec- 

tively given by 

f e = Y ec f c and f a = Y ac f c , (7) 

where Y ec and Y ac respectively denote the yield rate of ethanol and 

that of acetate from the yeast cells. 

In its entirety, our model for a continuous fermentation process 

is governed by the following system of ordinary differential equa- 

tions: 

dC(t) 

dt 
= f c − ρC(t) , 

dG (t) 

dt 
= f s − f g − ρG (t) , 

dE(t) 

dt 
= f e − ρE(t) , 

dA (t) 

dt 
= f a − ρA (t) , 

(8) 

supplemented by initial concentrations C(0) = C 0 > 0 , G (0) = G 0 > 

0 , and E(0) = A (0) = 0 . The outflows of the yeast cells, substrate, 

and products from the culture are assumed to be proportional to 

their own concentrations. For the sake of simplicity, we would at- 

tempt to work using the following dimensionless variables 

X 1 = 

C 

C crit 

, X 2 = 

G 

G crit 

, X 3 = 

E 

E crit 

, X 4 = 

A 

A crit 

, ˜ t = μmax · t. (9) 
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