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a b s t r a c t 

Type 1 diabetes patients need external insulin to maintain blood glucose within a narrow range from 

65 to 108 mg/dl (3.6 to 6.0 mmol/l). A mathematical model for the blood glucose regulation is required 

for integrating a glucose monitoring system into insulin pump technology to form a closed-loop insulin 

delivery system on the feedback of the blood glucose, the so-called “artificial pancreas”. The objective 

of this paper is to treat the exogenous glucose from food as a glucose disturbance and then develop a 

closed-loop feedback and feedforward control system for the blood glucose regulation system subject to 

the exogenous glucose disturbance. For this, a mathematical model for the glucose disturbance is pro- 

posed on the basis of experimental data, and then incorporated into an existing blood glucose regulation 

model. Because all the eigenvalues of the disturbance model have zero real parts, the center manifold 

theory is used to establish blood glucose regulator equations. We then use their solutions to synthe- 

size a required feedback and feedforward controller to reject the disturbance and asymptotically track a 

constant glucose reference of 90 mg/dl. Since the regulator equations are nonlinear partial differential 

equations and usually impossible to solve analytically, a linear approximation solution is obtained. Our 

numerical simulations show that, under the linear approximate feedback and feedforward controller, the 

blood glucose asymptotically tracks its desired level of 90 mg/dl approximately. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Because the pancreas of type 1 diabetes patients does not pro- 

duce insulin, which is required for glucose uptake and endoge- 

nous glucose mobilization, they have high blood glucose levels and 

need external insulin to assist glucose uptake and utilization. Ex- 

ternal insulin needs to be infused at an appropriate rate to main- 

tain blood glucose within the narrow range from 65 to 108 mg/dl 

(3.6 to 6.0 mmol/l). 

Mathematical models for the blood glucose regulation system 

are required for integrating a glucose monitoring system into in- 

sulin pump technology to form a closed-loop insulin delivery sys- 

tem, the so-called “artificial pancreas” (see Hovorka [13] , Panteleon 

et al. [28] , Steil et al. [32] ). To make this artificial pancreas as close 

as possible to the natural pancreas, many mathematical models 

for the regulation system have been proposed since the pioneer- 

ing work of Albisser et al. [2,3] and Clemens et al. [11] , including 

the linear model of Ackerman et al. [1] and various compartmental 

minimal models proposed by Bergman et al. [5–7] , Bertoldo et al. 
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[9] , Li et al. [18] , Liu et al. [19,20,22] , Man et al. [23–25] , Sturis 

et al. [34] , and Toffolo et al. [35,36] . 

The objective of this paper is to treat the exogenous glucose 

from food as a glucose disturbance and then develop a closed- 

loop feedback and feedforward control system for the blood glu- 

cose regulation system subject to the exogenous glucose distur- 

bance. For this, a mathematical model for the glucose disturbance 

will be proposed on the basis of experimental data, and then incor- 

porated into the blood glucose regulation model proposed by Liu 

et al. [19] . Because all the eigenvalues of the disturbance model 

have zero real parts, we will use the center manifold theory to 

establish blood glucose regulator equations, and then use the so- 

lutions of the regulator equations to synthesize required feedback 

and feedforward controllers to reject the disturbance and asymp- 

totically track either a constant glucose reference of 90 mg/dl or a 

time-dependent reference r ( t ) around 90 mg/dl. Since the regula- 

tor equations are nonlinear partial differential equations and usu- 

ally impossible to solve analytically, a linear approximation solu- 

tion is obtained. Our numerical simulations show that, under the 

linear approximate feedback and feedforward controller, the blood 

glucose asymptotically tracks its desired level of 90 mg/dl approx- 

imately. 
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Fig. 1. Experimental exogenous glucose input data of Korach-André et al. [16] and Fourier polynomial fitting. 

The significance of this work is the introduction of the exoge- 

nous glucose disturbance model. It is because of the introduction 

of the disturbance model that the center manifold theory can be 

used to establish the blood glucose regulator equations, which are 

a key to synthesizing feedback and feedforward controllers. 

2. Glucose disturbance model 

The glucose disturbance could be periodic with a period of 24 

h. In order to build up such a glucose disturbance model with a 

biological sense, experimental exogenous glucose input data are 

needed. Because we could not find such data over a time interval 

of 24 h, we use Korach–André et al.’s data over a time interval of 

8 h [16] . Thus the period of the disturbance model we are building 

up below is 8 h. However, this drawback does not hamper the use 

of our model mathematically as all the theories we are developing 

below still hold after the period of 8 h is changed to the period of 

24 h, or even to any other period. 

The data are converted into the glucose input rate (mg/l/min) 

by multiplying the data by 70 (kg) and dividing it by 6 (l) because 

the blood volume of a person with the weight of 70 (kg) is about 

6 (l). In order to fit the data by a Fourier polynomial, the data are 

replicated over another period of 8 h. As shown in Fig. 1 , the data 

can be well fitted by the Fourier polynomial 

G in = Ḡ in + α1 sin (ωt) + β1 cos (ωt) + α2 sin (2 ωt) + β2 cos (2 ωt) , 

(1) 

where Ḡ in = 71 . 21 mg/l/min, α1 = 17 . 91 mg/l/min, β1 = −13 . 41 

mg/l/min, α2 = 5 . 387 mg/l/min, β2 = 4 . 004 mg/l/min, and ω = 

π/ 240 /min. 

To maintain the blood glucose at a normal level of about 

90 mg/dl, a basal exogenous glucose input ḡ in of about 18 mg/l/min 

is required [19,40] . Setting α0 = Ḡ in − ḡ in = 71 . 21 − 18 = 53 . 21 

mg/l/min, Ḡ in is decomposed into Ḡ in = ḡ in + α0 and then 

G in = g in + α0 + α1 sin ( ωt ) + β1 cos ( ωt ) + α2 sin ( 2 ωt ) 

+ β2 cos ( 2 ωt ) . 

The part 

G d = α0 + α1 sin (ωt) + β1 cos (ωt) + α2 sin (2 ωt) + β2 cos (2 ωt) 

(2) 

can be treated as an exogenous glucose disturbance. The distur- 

bance vector 

g d = 

⎡ 

⎢ ⎢ ⎣ 

1 

sin (ωt) 
cos (ωt) 
sin (2 ωt) 
cos (2 ωt) 

⎤ 

⎥ ⎥ ⎦ 

(3) 

can be generated by the exosystem 

dv 

dt 
= A d v , v (0) = g d0 , (4) 

where 

A d = 

⎡ 

⎢ ⎢ ⎣ 

0 0 0 0 0 

0 0 ω 0 0 

0 −ω 0 0 0 

0 0 0 0 2 ω 

0 0 0 −2 ω 0 

⎤ 

⎥ ⎥ ⎦ 

, g d0 = 

⎡ 

⎢ ⎢ ⎣ 

1 

0 

1 

0 

1 

⎤ 

⎥ ⎥ ⎦ 

. 

3. Mathematical model of the glucose regulation subject to 

disturbance 

The blood glucose regulation system is briefly sketched in Fig. 2 

[19,20] . Glucose is produced from food and liver, and utilized 

by brain and nerve cells (insulin-independent) via the glucose 

transporter 3 (GLUT3) and by tissue cells such as muscle, kid- 

ney, and fat cells (insulin-dependent) via the glucose transporter 

4 (GLUT4). Glucose is transported into and out of liver cells by the 

concentration-driven GLUT2, which is insulin-independent. In re- 

sponse to low blood glucose levels ( < 80 mg/dl), the α cells of the 

pancreas produce the hormone glucagon. The glucagon initiates a 

series of activations of kinases, and finally leads to the activation 

of the glycogen phosphorylase, which catalyzes the breakdown of 

glycogen into glucose. In addition, the series of activations of ki- 

nases also result in the inhibition of glycogen synthase and then 

stop the conversion of glucose to glycogen. In response to high 

blood glucose levels ( > 120 mg/dl), the β cells of the pancreas se- 

crete insulin, which triggers a series of reactions to activate glyco- 

gen synthase to catalyze the conversion of glucose into glycogen. 

Insulin also initiates a series of activations of kinases in tissue cells 

to lead to the redistribution of the glucose transporter 4 (GLUT4) 
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