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a b s t r a c t 

We consider a stochastic model describing the spread of a vector borne disease in a community where 

individuals (hosts and vectors) die and new individuals (hosts and vectors) are born. The time to extinc- 

tion of the disease, T Q , starting in quasi-stationary (conditional on non extinction) is studied. Properties 

of the limiting distribution are used to obtain an approximate expression for E ( T Q ), the mean-parameter 

in the exponential distribution of the time to extinction, for a finite population. It is then investigated nu- 

merically and by means of simulations how E ( T Q ) and its approximations depend on the different model 

parameters. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Vector borne diseases have a great impact on human health in 

terms of mortality. Mosquitoes are perhaps the best known disease 

vectors, with various species playing a role in the transmission of 

infections such as malaria, yellow fever, dengue fever and West 

Nile virus. Mathematical modeling of malaria began with Ross’s 

model [1] . The Ross model is deterministic and reflects the ba- 

sic mechanism that both humans and mosquitoes are necessary 

for the transmission of infection. Despite its simplicity it has been 

used to establish an important threshold result and to study the 

effects of various methods of controlling malaria infection [2–5] . 

Consider a population in which a vector borne disease is intro- 

duced. In the current paper we use stochastic models to answer 

the question: what might happen? Recurrence of epidemic out- 

breaks can be explained by the combined influence of epidemic 

and demographic forces. Stochastic models that account for these 

two forces in a closed population predict that the infection will 

eventually become extinct. The time to extinction is an important 

measure of the persistence of the infection. 

Recently, a stochastic model for a vector borne epidemic has 

been suggested by Llyod et al. [3] . In their model, they have exam- 

ined the impact of stochastic effects on the invasion and persis- 

tence of vector-borne infection. The disease invasion probabilities 
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are derived using branching process methodology. In [6] , Bolzoni 

et al. extended this model to incorporate multiple hosts. 

The aim of the present paper is to study the time to extinction 

for a stochastic model for vector borne diseases. The mathemati- 

cal problem of determining the time to extinction has proved to 

be surprisingly difficult (e.g Nåsell [7] ) even for human-to-human 

transmittable disease, and vector borne diseases are more compli- 

cated. The basic reproduction number of an infection is the most 

important concept in mathematical epidemiology, and is important 

also when studying properties of the extinction time. This quan- 

tity, denoted by R 0 , can for human-to-human diseases be defined 

as the expected number of new cases generated by one typical 

infectious individual in a large susceptible population. For vector 

borne diseases it is defined similarly, but now this number has 

to be computed “via” the number of infected vectors. If R 0 > 1 , 

as is assumed in this paper, then we say that the population is 

above threshold. Introducing an infective to a susceptible commu- 

nity above threshold may, as is well known, lead to a large out- 

break. Many of the models that have been employed in vector- 

borne settings have been deterministic [2,8–11] , ignoring the pos- 

sible importance of random effects. Stochastic effects can be sig- 

nificant during the period immediately after the introduction of 

the infection into a population [3] : disease invasion is often highly 

stochastic. Random effects are also the cause leading to extinction 

from an endemic setting [12] . Deterministic models are hence not 

of much use when aiming to derive expressions for the time to ex- 

tinction, because extinction is caused by random fluctuations from 

the expected (or deterministic) curve. 
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The rest of the paper is structured as follows. Section 2 is 

devoted to a brief review of the deterministic Ross model and 

the corresponding stochastic formulation. Section 3 is devoted to 

the law of large numbers of the stochastic epidemic process and 

Section 4 to its diffusion limit which is the limits of the stochas- 

tic models. In Section 5 it is shown that in a finite population 

the time to extinction is exponentially distributed if the process 

is started in quasi-stationarity. An approximate expression for τ , 

the mean parameter of the exponential distribution, is derived 

in Section 5.3 where we approximate the quasi-stationary dis- 

tribution by the stationary distribution of the limiting diffusion 

(e.g Nåsell [7] , used the same approach for a different model). In 

Section 6 we studied the influence of different parameters on the 

expected time to extinction by using numerical illustrations as well 

as stochastic simulations. 

2. The models 

2.1. The deterministic Ross-Macdonald model 

The Ross-Macdonald model assumes that each host and vector 

are, at any point in time, either susceptible to the infection or have 

the infection and are infectious (incubation periods are hence ig- 

nored as well as immunity). The host population size is assumed 

to be constant and its size is denoted by N H . The number of hosts 

that are infectious at time t is written as I H ( t ), which means that 

there are N H − I H (t) susceptible hosts. The corresponding fractions 

of the host population are given by I H ( t )/ N H and (N H − I H (t)) /N H , 

respectively. 

We write the size of the vector population as N V and the num- 

ber of infectious vectors at t as I V ( t ). It is assumed that the size of 

the vector population N V is constant: the rate at which vectors die 

balances the rate at which they are born. 

Newly born hosts and vectors are taken to be susceptible: it is 

assumed that no vertical transmission occurs. A susceptible host 

can acquire infection by being bitten by an infected vector. Assum- 

ing that the rate at which a given vector bites hosts is indepen- 

dent of the number of hosts that are present and that the vectors 

do not have to compete for hosts on which to bite, the overall rate 

at which bites occur is proportional to the number of vectors but 

independent of the number of hosts. A single vector is assumed 

to bite hosts at rate k . The probability of transmission occurring if 

an infectious vector bites a susceptible host once is denoted by p vh . 

Once infected, a host remains infectious for an average of 1/ σ time 

units, after which they recover and become susceptible again. The 

probability of transmission occurring if a susceptible vector bites 

an infectious host once is denoted p hv , the per-bite host to vector 

transmission probability. Once infected, a vector remains infectious 

until it dies and it is assumed that the infectious vector live for an 

average of 1/ δ time units and that it is replaced by a susceptible 

vector upon death, thus keeping the vector population constant. 

The death rate for vectors is the same for infected and susceptible 

vectors. This leads to the following pair of differential equations: ⎧ ⎪ ⎨ 

⎪ ⎩ 

dI H 
dt 

= kp v h I V 

(
N H − I H 

N H 

)
− σ I H , 

dI V 
dt 

= kp h v (N V − I V ) 
I H 
N H 

− δI V . 

(1) 

The way the model was described the host population satisfies 

a SIS (susceptible-infectious-susceptible) epidemic model while the 

vector population satisfies a SI (susceptible-infectious) epidemic 

model. Of course this is just a matter of interpretation, hosts have 

much longer life-length compared to vectors, but since the equa- 

tions are symmetric, the host and vector could either both be SI, 

both SIS or one of each, the model only states that the sums of 

the susceptibles and infectives remain constant. 

The basic reproduction number is 

R 0 = k 2 p h v p v h N V /δσN H . (2) 

We set the derivatives to 0 and then solve them in terms 

of proportions I H / N H and I V / N V , thus we obtain two equilibrium 

states, says, the disease-free state (0, 0) together with the point 

( ̄i H , ̄i V ) given by 

ī H = 

R 0 − 1 

R 0 

kp v h c v 

kp v h c v + σ
, ī V = 

R 0 − 1 

R 0 

kp h v 
kp h v + δ

, (3) 

where c v = N V /N H denotes the community number of vectors per 

host. The second state is relevant only if R 0 > 1 . The disease-free 

state is stable for R 0 < 1 and unstable for R 0 > 1 , while the point 

( ̄i H , ̄i V ) is stable for R 0 > 1 . In other words, if R 0 < 1 the infection 

is predicted to die out fairly quickly. On the other hand, if R 0 > 1 

then it will rise towards a positive infection level, called the en- 

demic level. 

2.2. The stochastic Markovian dynamic vector-borne epidemic model 

We now define the corresponding Markovian stochastic vector- 

borne epidemic model. The numbers of hosts and vectors remain 

constant and are denoted N H and N V as before. Each vector bites 

hosts according to a Poisson process with rate k , each such bite 

being with a randomly selected host, the times between such bites 

are hence independent identically distributed according to the ex- 

ponential distribution with rate k . If the vector is infectious and 

the host susceptible transmission occurs with probability p vh , and 

with probability p hv for the opposite scenario (other bites have no 

effect). A host who gets infected remains so for an exponentially 

distributed time with rate σ , and then recovers and immediately 

becomes susceptible again. A vector that gets infected remains in- 

fectious for the remainder of its life, and this life length is expo- 

nentially distributed with rate parameter δ, just like susceptible 

vectors. The disease is introduced by having h and v infected hosts 

and vectors, respectively. 

Let 

I(t) = (I H (t ) , I V (t )) 

denote the process governing the vector borne epidemic. The 

possible events and their rates are given in Table 1 below. 

The epidemic model is governed by the bivariate process I(t) = 

(I H (t) , I V (t)) . 

3. Law of large numbers for the stochastic vector-borne 

epidemic 

In this section we assume that the populations of hosts 

and vectors are large. We relabel the numbers of hosts N H 

and vectors N V by N H = N and N V = c v N. Further, we relabel 

I(t) = (I H (t ) , I V (t )) by I N (t ) = (I N 
H 
(t) , I N 

V 
(t)) . We consider a pro- 

cess Ī N (t) = ( ̄I N H (t ) , ̄I N V (t )) = ( 
I N 
H 
(t ) 

N 

, 
I N 
V 
(t ) 

N 

) . We derive a law of large 

numbers for Ī N (t) to show that the stochastic process Ī N (t) con- 

verges to a deterministic process ˆ ī (t) . To obtain a non-trivial lim- 

iting deterministic process, we start the proportion process with 

small positive fractions of infectious hosts and vectors. This leads 

to Ī N (0) = ( ̄I N 
H 
(0) , ̄I N 

V 
(0)) = ( 

I N H (0) 

N 

, 
I N V (0) 

N 

) = (εN 
H , ε

N 
V ) , where εN 

H 
, εN 

V 

are positive and small. This starting point is arbitrarily chosen and 

we do not claim that it is exactly here that the stochastic epidemic 

process will cross when the number of infectives grows in compar- 

ison to the population. In what follows, we show that the starting 

point has negligible effect on the state of the process as long as 

(εN 
H 

, εN 
V 
) is close to (0, 0). 
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