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a b s t r a c t 

This paper deals with a delayed reaction-diffusion predator–prey model with non-continuous threshold 

harvesting. Sufficient conditions for the local stability of the regular equilibrium, the existence of Hopf 

bifurcation and Turing bifurcation are obtained by analyzing the associated characteristic equation. By 

utilizing upper-lower solution method and Lyapunov functions the globally asymptotically stability of a 

unique regular equilibrium and asymptotically stability of a unique pseudoequilibrium are studied re- 

spectively. Further, the boundary node bifurcations are studied. Finally, numerical simulation results are 

presented to validate the theoretical analysis. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Harvesting of species is an important issue from ecological 

and economic perspectives [1–3] . It is commonly carried out in 

wildlife, fishery, and forestry management and in integrated pest 

management (IPM) programs. There is a wide range of interest 

in the use of bioeconomic models to gain insight into the sci- 

entific management of renewable resources such as fisheries and 

forests. Presently, there are numerous works on predator–prey sys- 

tems with harvest terms [4–7] . 

Most models with harvesting consider either constant or linear 

harvesting functions and harvesting starts at t = 0 . We remark that 

it is not very realistic to assume that harvesting starts at t = 0 . In 

this regard, threshold policy harvesting in which harvesting starts 

only when a population has reached a certain threshold value T 

has been proposed (see [8–13] ). It is believed that such harvesting 

function is more sound from the biological view point. Classically, 

such a harvesting function is defined as 

ψ(x ) = 

{
0 , x < T , 
qx, x > T . 

(1.1) 
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In [8] , Meza et al. studied the following Rosenzweig–MacArthur 

model with threshold harvesting ⎧ ⎪ ⎨ 

⎪ ⎩ 

dx 
dt 

= rx (1 − x 
K 
) − xy 

A + x , 

dy 
dt 

= 

sA (x −J) 
(J+ A )(x + A ) − εy, 

x (0) = x 0 > 0 , y (0) = y 0 > 0 , 

(1.2) 

where 

ε = 

{
0 , x < T , 
1 , x > T . 

(1.3) 

The authors used a Liapunov functional approach to prove that the 

point in the sliding region is globally asymptotically stable under 

some conditions. 

In [10] , Zhang and Tang studied a Filippov ratio-dependent 

prey-predator model with an economic threshold. The sliding 

mode domain, sliding mode dynamics, and local sliding bifurca- 

tions including regular/virtual equilibrium bifurcations and bound- 

ary node bifurcations are studied. In [12] , threshold policy is pro- 

posed to control pests. Research results show that as the thresh- 

old value varies, local sliding bifurcations including boundary node 

(saddle), tangency, and pseudo–saddle–node bifurcations occur se- 

quentially, and global sliding bifurcations including buckling bi- 

furcations of the sliding cycles, sliding crossing bifurcations, and 

pseudohomoclinic bifurcations can be presented. 

The models mentioned above are mainly described by ordinary 

differential equations (ODEs). It is well known that delay differen- 
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tial equations exhibit much more complicated dynamics than ODEs 

since it can cause the loss of stability and induce various oscilla- 

tions, periodic solutions and chaos phenomena [14–21] . Delay due 

to gestation is a common example, because consumption of prey 

by a predator throughout its history generally governs the present 

birth rate of the predator. Therefore, more realistic models of pop- 

ulation interactions should take into account the effect of delay. 

On the other hand, in real life, a species is spatially heterogeneous. 

This spatial dispersal is mainly due to resource limitation: in re- 

gions of high population density, food will become scarce and indi- 

viduals will tend to migrate to regions of lower population density 

[22] . 

Motivated by the above discussions, following the works of au- 

thors in [23–27] , we consider the following Leslie predator–prey 

system ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂u 
∂t 

= d 1 �u + ru (1 − u 
K 
) 

− mu v (t−τ1 ) 
a + u 2 − ψ(u ) , (x, t) ∈ � × (0 , + ∞ ) , 

∂v 
∂t 

= d 2 �v + s v (1 − v 
hu (t−τ2 ) 

) , (x, t) ∈ � × (0 , + ∞ ) , 

u (x, t) = φ1 (x, t) , v (x, t) 

= φ2 (x, t) , (x, t) ∈ � × [ −τ, 0] , 

∂u (t,x ) 
∂n 

= 

∂v (t,x ) 
∂n 

= 0 , t > 0 , x ∈ ∂�

(1.4) 

where u, v represent the prey and predator biomass, respectively. K 

is carrying capacity, r is intrinsic growth rate of prey, m is the cap- 

ture rate of the predator, s is intrinsic growth rate of predator, a 

measures the extent to which environment provides protection to 

prey u , the parameter h is a measure of the food quality of the prey 

for conversion into predator births. τ 1 represents that the preda- 

tor species need time τ 1 to possess the ability of predation after 

it was born, while τ 2 denotes the time taken for digestion of the 

prey, � denotes the Laplacian operator, � is a bounded domain, 

n is the normal vector that goes out of bounded domain �. The 

homogeneous Neumann boundary conditions indicate that there is 

no population flux across the boundaries. For the initial conditions, 

we assume that 

φ j (s, x ) ∈ C = C([ −τ, 0] , X ) 

and X is defined by 

X = { u ∈ W 

2 , 2 (�) : 
∂u (t, x ) 

∂n 

= 

∂v (t, x ) 

∂n 

= 0 , x ∈ ∂�} 
with the inner product 〈·, ·〉 . ψ( u ) is a harvesting term and defined 

as follows 

ψ(u ) = 

{
0 , u < T , 
qu, u > T , 

(1.5) 

where q < r is harvest coefficient. It works as follows: when spa- 

tially population density of prey u is above a certain level or 

threshold T , harvesting occurs; when spatially population density 

of prey u falls below that level, harvesting stops. 

By letting 

t̄ = r t, ū = 

u 

K 

, ̄v = 

m v 
r K 

2 
, ā = 

a 

K 

2 
, ̄s = 

s 

r 
, ̄h = 

mh 

r K 

, τ̄1 = τ1 r, 

τ̄2 = τ2 r, d̄ 1 = 

d 1 
r 

�2 , d̄ 2 = 

d 2 
r 

�2 , ̄x = 

x 

�
, T̄ = 

T 

K 

, q̄ = qr 

(1.6) 

and dropping the bars for the sake of simplicity, system (1.4) be- 

comes the following system { 

∂u 
∂t 

= d 1 �u + u (1 − u ) − u v (t−τ1 ) 
a + u 2 − ψ(u ) , 

∂v 
∂t 

= d 2 �v + s v (1 − v 
hu (t−τ2 ) 

) , 
(1.7) 

To the best of our knowledge, few researchers have studied de- 

layed reaction–diffusion with non-continuous threshold harvesting. 

In this paper, we will study the existence of equilibrium, stability 

and Hopf bifurcation of the equilibrium. 

The paper is organized as follows. In Section 2 , we give some 

preliminaries. In Section 3 , we consider the existence of equilib- 

rium points of system (1.7) . In Section 4 , we analyze the corre- 

sponding characteristic equations and investigate the local stability 

and the existence of Hopf bifurcation at a regular equilibrium. In 

Section 5 , we use upper-lower solution method to derive sufficient 

conditions for the global asymptotic stability of the regular equilib- 

rium of system (1.7) . In Section 6 , we discuss the global asymptotic 

stability of the pseudoequilibrium. In Section 7 , we study sliding 

bifurcation. In Sections 8 and 9 , we carry out numerical simula- 

tions to illustrate the main theoretical results. Section 10 concludes 

with a brief discussion. 

2. Preliminaries 

In [28] , the authors have proposed some useful properties and 

definitions for Filippov systems which are described by ordinary 

differential equations. Here, we introduce these properties and def- 

initions into partial differential equations, so that we can investi- 

gate system (1.7) in more details. 

Letting H(Z) = u − T with vector Z = (u, v ) T , and 

F G 1 (Z) = 

(
d 1 �u + u (1 − u ) − u v (t − τ1 ) 

a + u 

2 
, d 2 �v 

+ s v 
(

1 − v 
hu (t − τ2 ) 

))T 

, 

F G 2 (Z) = 

(
d 2 �u + u (1 − u ) − u v (t − τ1 ) 

a + u 

2 
− qu, d 2 �v 

+ s v 
(

1 − v 
hu (t − τ2 ) 

))T 

. 

Then system (1.7) can be rewritten as the following Filippov 

system 

∂Z 

∂t 
= 

{
F G 1 (Z) , Z ∈ G 1 , 

F G 2 (Z) , Z ∈ G 2 , 
(2.1) 

where G 1 = { Z | H(Z ) < 0 } , G 2 = { Z | H(Z ) > 0 } . Furthermore, the dis- 

continuity boundary (or manifold) 	s separating the two regions 

G 1 and G 2 is described as 	s = { Z| H(Z) = 0 } . The main charac- 

teristic of a Filippov system is that control is suppressed when 

the value of the threshold function is below a previously chosen 

threshold policy; above the threshold, control is applied, while in 

classical systems, control has been implemented all along. In the 

following, we call Filippov system (2.1) defined in region G 1 sys- 

tem S 1 and that defined in region G 2 system S 2 . 

The following definitions of all types of equilibria of Filippov 

system are necessary throughout the paper [29–32] . 

Definition 2.1. A point Z ∗ is called a regular equilibrium of system 

(2.1) if F G 1 (Z ∗) = 0 , H ( Z ∗) < 0 or F G 2 (Z ∗) = 0 , H ( Z ∗) > 0. A point Z ∗

is called a virtual equilibrium of system (2.1) if F G 1 (Z ∗) = 0 , H ( Z ∗) 

> 0 or F G 2 (Z ∗) = 0 , H ( Z ∗) < 0. 

Definition 2.2. A point Z ∗ is called a pseudoequilibrium if it is 

an equilibrium of the sliding mode of system (2.1) , that is, (1 −
λ) F G 1 (Z ∗) + λF G 2 (Z ∗) = 0 , H(Z ∗) = 0 , and 0 < λ < 1, where 

λ = 

〈 H Z (Z) , F G 1 (Z) 〉 
〈 H Z (Z) , F G 1 (Z) − F G 2 (Z) 〉 . (2.2) 

Definition 2.3. A point Z ∗ is called a tangent equilibrium of system 

(2.1) if Z ∗ ∈ 	s and 〈 H Z (Z ∗) , F G 1 (Z ∗) 〉 = 0 or 〈 H Z (Z ∗) , F G 2 (Z ∗) 〉 = 0 . 
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