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a b s t r a c t 

For patients with acute respiratory distress syndrome (ARDS), mechanical ventilation (MV) is an essential 

therapy in the intensive care unit (ICU). Suboptimal PEEP levels in MV can cause ventilator induced lung 

injury, which is associated with increased mortality, extended ICU stay, and high cost. The ability to pre- 

dict the outcome of respiratory mechanics in response to changes in PEEP would thus provide a critical 

advantage in personalising and improving care. Testing the potentially dangerous high pressures would 

not be required to assess their impact. 

A nonlinear autoregressive (NARX) model was used to predict airway pressure in 19 data sets from 10 

mechanically ventilated ARDS patients. Patient-specific NARX models were identified from pressure and 

flow data over one, two, three, or four adjacent PEEP levels in a recruitment manoeuvre. Extrapolation 

of NARX model elastance functions allowed prediction of patient responses to PEEP changes to higher or 

lower pressures. 

NARX model predictions were more successful than those using a well validated first order model 

(FOM). The most clinically important results were for extrapolation up one PEEP step of 2 cmH 2 O from 

the highest PEEP in the training data. When the NARX model was trained on one PEEP level, the mean 

RMS residual for the extrapolation PEEP level was 0.52 (90% CI: 0.47–0.57) cmH 2 O, compared to 1.50 (90% 

CI: 1.38–1.62) cmH 2 O for the FOM. When trained on four PEEP levels, the NARX result was 0.50 (90% CI: 

0.42–0.58) cmH 2 O, and was 1.95 (90% CI: 1.71–2.19) cmH 2 O for the FOM. 

The results suggest that a full recruitment manoeuvre may not be required for the NARX model to ob- 

tain a useful estimate of the pressure waveform at higher PEEP levels. The methodology could thus allow 

clinicians to make informed decisions about ventilator PEEP settings while reducing the risk associated 

with high PEEP, and subsequent high peak airway pressures. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Acute respiratory distress syndrome (ARDS) requires mechan- 

ical ventilation (MV) in the intensive care unit (ICU) [1,2] . ARDS 

can involve elements of inflammation in the lungs and fluid 

accumulation in airways, and has a high mortality rate [3] . Positive 

end-expiratory pressure (PEEP) is a ventilator setting used to 

prevent de-recruitment of lung units at the end of expiration. 

However, suboptimal PEEP settings can lead to ventilator induced 

lung injury (VILI) [4,5] . VILI in turn increases mortality and mor- 

bidity of ARDS patients [4] . When PEEP levels are too high, over 

distension of alveoli may cause VILI. Low PEEP levels are known 
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to cause atelectrauma, and thus further damage. Hence, setting 

optimal PEEP levels is necessary to minimise the incidence of VILI, 

and reduce morbidity and mortality [6] . 

Physiological modelling can be used to capture patient-specific 

pulmonary mechanics to aid determination of optimal ventilator 

settings for each patient [7,8] . There have been a wide range of 

physiologically and clinically relevant models [9–14] . Models of 

pulmonary mechanics range from very simple models [15] to com- 

plex descriptive models [16] . Both modelling strategies have of- 

fered clinical benefit in different situations. However, simpler mod- 

els are limited in their abilities to describe all respiratory mechan- 

ics, and more complex models can suffer from non-identifiability 

[14,17] . Predicting pulmonary behaviour beyond the clinical con- 

ditions for which a model was identified or trained requires a 

highly robust, yet descriptive, model that can be evaluated on the 

data typically available in real time. Overall, while there is debate 

around which models are suitable for various modes of ventilation, 
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there is also a real lack of research on the extrapolation of any such 

models across PEEP levels. 

We have previously proposed a nonlinear autoregressive (NARX) 

model of respiratory mechanics [18–20] . The NARX model has suc- 

cessfully captured airway pressure waveforms in ARDS patients 

during recruitment manoeuvres [18,20] . The model uses pressure- 

dependent basis functions to capture pulmonary system elastance, 

and multiple time-dependent resistance coefficients to capture 

lung relaxation and viscoelastic effects. 

The aim of this research is to determine the ability of the NARX 

model to extrapolate and predict the effects of changes in PEEP 

settings beyond those for which the model was trained. If suc- 

cessful, it would allow clinicians to determine whether or not to 

alter, and in particular raise, the PEEP setting for a particular pa- 

tient without the need for actually trialling these alternative set- 

tings. Hence, the ability to extrapolate and predict the outcomes 

of changes could reduce the risk of testing higher, or lower, PEEP 

levels and thus reduce the incidence of VILI, which overall would 

improve patient outcomes. 

2. Materials and methods 

2.1. Data 

Data from a pilot Clinical Utilisation of Respiratory Elastance 

(CURE) software trial [21] was used in this analysis. Airway pres- 

sure and flow data were collected from ten fully sedated ARDS pa- 

tients. Seven patients were ventilated in pressure controlled mode, 

and three were ventilated in volume controlled mode. The patient 

age ranged from 18 to 88, with a mean of 55 years. The breathing 

rate was approximately 3.3 s, with no end-expiratory pause. Pres- 

sure and flow were recorded from a Puritan Bennett 840 ventilator 

at a sampling rate of 50 Hz. Volume was calculated from continu- 

ous integration of the flow, with compensation for volume drift via 

spline correction to maintain a volume of zero at PEEP. 

As patients sometimes underwent multiple recruitment ma- 

noeuvres during the trial, 19 sets of data were obtained. PEEP 

at the beginning of the recruitment manoeuvre varied between 

8 cmH 2 O and 16 cmH 2 O for different patients. During a recruit- 

ment manoeuvre, PEEP was increased in steps of 2 cmH 2 O. The 

recruitment manoeuvres of different patients contained different 

numbers of PEEP steps. All 19 data sets contained at least four 

PEEP step increases, so the first five PEEP levels of each data set 

were used in this analysis. This limit was chosen to allow a con- 

cise and simple analysis. 

2.2. Respiratory models 

The first order model (FOM) of pulmonary mechanics forms the 

basis of the NARX model. The FOM contains single resistive and 

elastic components: 

P ( t ) = R ̇

 V ( t ) + EV ( t ) + P 0 ( t ) (1) 

where P is the measured airway pressure (cmH 2 O), t is time (s), R 

is the airway resistance (cmH 2 Os/L), ˙ V is the airway flow rate (L/s), 

E is the pulmonary elastance (cmH 2 O/L), V is the inspired volume 

(L), and P 0 is the offset pressure (cmH 2 O). 

The NARX model builds upon the FOM by incorporating pres- 

sure dependent basis functions to describe elastance, and multi- 

ple time dependent terms that represent the effect of airway re- 

sistance to flow and changes in flow. The NARX model is defined: 

P ( t ) = 

M ∑ 

i =1 

a i φi ( P ( t ) ) V ( t ) + 

L ∑ 

j=0 

b j ˙ V 

(
t − j 

)
+ P 0 ( t ) (2) 

where φi ( P ( t )) is the particular basis function value for a given 

pressure measurement (dimensionless); a i is the coefficient for a 

given basis function (cmH 2 O/L), M is the number of basis functions 

used, b j is a series of terms that capture resistance and inertance of 

the flow (cmH 2 Os/L); L is the number of resistive terms. The sub- 

script –j in the second term refers to the previous time samples. 

Thus, each P ( t ) is calculated from information from the previous L 

data points. The sum of the basis functions multiplied by their a i 
coefficients represent elastance through pressure. The FOM can be 

replicated with M = L = 1, and zero order basis functions. 

2.3. Basis function modification 

The original NARX model [18] used first order b-spline ba- 

sis functions to capture the elastance pressure shape [22] . How- 

ever, such functions are not suitable for extrapolation beyond the 

range of data used to train the model. To extrapolate the NARX 

model, elastance basis functions must extend to cover pressures 

not present in the training data. 

When the pressure dependent elastance profiles were identi- 

fied for the entire recruitment manoeuvre, several different type 

of pressure-elastance shapes were observed ( Fig. 1 ). It was deter- 

mined that the range of profiles observed could be constructed 

with linear combinations of constant, linear, exponential, and sig- 

moidal functions ( Fig. 2 ): 

φ1 = 1 (3a) 

φ2 = 

P 

50 

(3b) 

φ3 = e −0 . 04 P (3c) 

φ4 = 

1 

1 + e −0 . 25 ( P−28 ) 
(3d) 

Fig. 1. Five first order basis functions multiplied by the coefficients a 1 –a 5, identified for three indicative patient responses over 100% of the available data. 
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