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a b s t r a c t 

In earlier work, we have introduced the circuit-breaking algorithm (CBA) for the analysis of intracellular 

regulation networks. This algorithm uses the network topology to construct a one-dimensional circuit- 

characteristic whose zeros correspond to the fixed points of the system. 

In this study, we apply the CBA to monotone systems whose flow preserves a partial order with respect 

to some orthant cone. We consider relations between stability of fixed points and the derivative of the 

corresponding zeros of the circuit-characteristic. In particular, we derive sufficient conditions for insta- 

bility in case of global asymptotic stability of the open-loop system. Furthermore, we fully characterize 

stability of the fixed points if in addition the system is monotone. Combined with the theory of mono- 

tone systems, our results are used to characterize the long-term behavior of two models for different 

intracellular regulation processes. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Modeling the dynamic behavior of biochemical regulation net- 

works with ordinary differential equations has become a standard 

approach in systems biology. In the last decades many models for 

different signaling pathways or molecular regulation mechanisms 

have been built and made available in databases. Some of these 

have a highly complex interaction graph (I-graph) topology and can 

show a rich variety of behaviors. Feedback circuits are important 

network motifs that are crucial for the qualitative dynamic behav- 

ior of such networks. The role of single feedback circuits has inten- 

sively been investigated for general model classes. On the contrary, 

there are only few approaches going beyond numerical studies for 

the investigation of more complex networks. However, an increas- 

ing number of studies show the importance of the network topol- 

ogy for a robust and reliable functioning (see e.g. Wagner [22] ). 

Therefore, methods that operate on the I-graph topology are highly 

desirable, and can facilitate a mechanistic understanding of these 

networks. 

An example for such an approach is the circuit-breaking 

algorithm (CBA), which constructs a one-dimensional circuit- 

characteristic based on the I-graph topology [11] . This characteris- 

tic provides important information about the system. Its zeros cor- 
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respond to the fixed points of the system. The CBA exploits the de- 

pendencies among the variables in a circuit, thereby reducing the 

dimension of the implicit equations that have to be solved. This 

can make the calculation of fixed points highly efficient, depend- 

ing on the network topology. Moreover, the characteristic contains 

even more information about the role of the network topology for 

the long term behavior of the system. Once the characteristic has 

been calculated, our approach allows for example to visualize the 

influence of parameters on the set of fixed points. Furthermore, it 

allows to identify subnetworks that are responsible for a certain 

dynamic behavior, or that are necessary for the occurrence of phe- 

nomena such as fixed point bifurcations and multistability [14,15] . 

In order to characterize the long-term behavior of a system, 

knowledge about the stability of fixed points is important. Thus, in 

Radde [13] we started to investigate relations between the circuit- 

characteristic and the stability of fixed points and derived condi- 

tions for the case that there is a universal node that is part of all 

feedback circuits in the network. 

Here we extend this work for general networks by investigat- 

ing the role of the CBA for monotone systems whose flow �t ( x ) 

preserves a partial ordering with respect to some orthant K of the 

coordinate system. Our main results are illustrated in Fig. 1 . We 

determine sufficient conditions for stability or instability of a fixed 

point based on the slope of the circuit-characteristic. Furthermore, 

we fully characterize stability of the fixed point set and the long- 

term behavior of the system in case of monotone systems. We 

apply our approach to characterize the long-term behaviors of a 
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Fig. 1. Characterization of stability of fixed points via the CBA. The CBA works on the network topology and calculates a one-dimensional circuit-characteristic c ( κ1 ) whose 

zeros correspond to the fixed points of the system. A positive slope of this characteristic implies instability of the respective fixed point in case of global asymptotic stability 

(g.a.s.) of the open-loop system (OLS) and a negative slope implies asymptotic stability if the system is in addition monotone. A pair of ordered initial conditions is denoted 

by x 0 and y 0 here. 

transcription factor network model for cellular differentiation of 

hematopoietic stem cells and of a model for the MAPK signaling 

pathway. 

2. Materials and methods 

In the following, the mathematical framework for our theory is 

introduced and the properties of monotone systems that are rele- 

vant for this study are summarized. Moreover, we shortly describe 

the general scheme of the CBA. More details can be found in Radde 

[11 , 13 ]. 

We consider regulatory network models of n interacting 

molecules. The dynamics of their concentrations or activity states 

are described by ordinary differential equations ( ode ), 

˙ x i = f i (x ) i = 1 , . . . , n, x ∈ U ⊆ R 

n , (1) 

defined on an open, convex and positively invariant subset U of 

R 

n . Lipschitz continuity of the vector field f ( x ) guarantees the ex- 

istence of a unique and smooth solution �t ( x 0 ) for an initial value 

problem with initial condition x (t 0 ) = x 0 , in an interval t ∈ I x 0 that 

contains t 0 . All trajectories shall be bounded. Furthermore, we as- 

sume that the system has a state-independent underlying I-graph 

G ( V, E ), whose vertices v 1 , . . . , v n represent the molecular species. 

Edges e j → i indicate regulatory influences, i.e. 

e j→ i ∈ E ⇔ ∃ x such that 
∂ f i (x ) 

∂x j 
� = 0 for i � = j (2) 

e i → i ∈ E ⇔ ∃ x such that 
∂ f i (x ) 

∂x i 
> 0 . (3) 

Note that negative self-regulations are omitted in this definition of 

the I-graph. We also remark that this definition is more general 

than others, which assume the partial derivatives to have constant 

signs, independent from the state of the system (see e.g. pioneer- 

ing work of Thomas and D’Ari on gene regulatory networks [19,20] , 

and subsequent work on positive and negative circuits and their 

relations to monotone systems and multistationarity [8,18] ). How- 

ever, in case of constant signs, edges might be labeled by the re- 

spective sign. In this framework it is intuitive to define the sign 

of a (directed or undirected) path in a graph in the usual way as 

the sign of the product of signs of all edges in this path. The same 

applies to directed and undirected circuits. Thus a circuit with an 

even (odd) number of negatively labeled edges is a positive (nega- 

tive) circuit. 

2.1. Monotone systems 

The theory about monotone systems or systems with order pre- 

serving flow dates back to Hirsch and Smith [9,16] and was ex- 

ploited for input/output control systems by Sontag, Angeli and 

coworkers [1–4] . 

We consider systems that have a flow which preserves a partial 

ordering with respect to some orthant K of the Cartesian coordi- 

nate system. Such a K can be described by 

K = { x ∈ R 

n : (−1) m i x i ≥ 0 , i = 1 , . . . , n }; m i ∈ { 0 , 1 } . (4) 

K is in particular a (convex and pointed) cone and generates a par- 

tial ordering 
K in the usual way: 

x 
K y ⇔ y − x ∈ K. (5) 

A flow of a differential equation system preserves a partial order- 

ing with respect to K if forward trajectories of two ordered initial 

conditions preserve this ordering, i.e. 

(x 0 , y 0 ∈ U) ∧ (x 0 
K y 0 ) ⇒ �t (x 0 ) 
K �t (y 0 ) (6) 

for all t ≥ 0 for which both solutions are defined. Systems with or- 

der preserving flows are very well investigated (see e.g. Hirsch [9] , 
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