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a b s t r a c t

A cancer grows from a single cell, thereby constituting a large cell population. In this work, we are
interested in howmutations accumulate in a cancer cell population. We provide a theoretical framework
of the stochastic process in a cancer cell population and obtain near exact expressions of allele frequency
spectrum or AFS (only continuous approximation is involved) from both forward and backward treat-
ments under a simple setting; all cells undergo cell divisions anddie at constant rates, b and d, respectively,
such that the entire population grows exponentially. This setting means that once a parental cancer cell
is established, in the following growth phase, all mutations are assumed to have no effect on b or d
(i.e., neutral or passengers). Our theoretical results show that the difference from organismal population
genetics is mainly in the coalescent time scale, and the mutation rate is defined per cell division, not per
time unit (e.g., generation). Except for these two factors, the basic logic is very similar between organismal
and cancer population genetics, indicating that a number of well established theories of organismal
population genetics could be translated to cancer population genetics with simple modifications.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A tumor grows from a single cell, as has been well recognized
for several decades (Muller, 1950; Nowell, 1976; Fidler, 1978;
Dexter et al., 1978;Merlo et al., 2006). Through the growth process,
cells accumulate various kinds of mutations, from simple point
mutations to more drastic changes at the chromosomal level, such
as deletions and amplifications (Sjöblom et al., 2006; Wood et al.,
2007; The Cancer Genome Atlas Research Network, 2008, 2012,
2014; Garraway and Lander, 2013; Vogelstein et al., 2013). There
are two major categories of mutations in cancer cells, driver and
passenger mutations. The former are generally cell autonomous,
that is, they increase the reproductive ability of the carrier cell
(i.e., adaptive), while the latter have no effect on the reproductive
ability (i.e., neutral). A new technology for genome sequencing
from a single cell opened a new window in cancer genetics, be-
cause sequencing a number of cells from a single tumor makes
it possible to identify heterogeneity in the catalog of driver and
passenger mutations between cells, from which we are able to
infer when and how the tumor has grown (Navin, 2015). Even
without such desirable data available, the frequencies ofmutations
in bulk-sequencing data are informative to infer the history of a
tumor (Williams et al., 2016).

* Correspondence to: Graduate University for Advanced Studies, Hayama, Kana-
gawa 240-0193, Japan.

E-mail address: innan_hideki@soken.ac.jp (H. Innan).

Population genetics provides a solid theoretical framework for a
wide variety of such inference methods (e.g., Nielsen and Slatkin,
2013; Wakeley, 2009). The coalescent (Kingman, 1982; Hudson,
1983; Tajima, 1983) plays the central role in providing theoretical
predictions of the pattern of genetic variation,which can be used to
compute the likelihood of the observed variation data (Donnelly,
1996; Tavaré et al., 1997). It concerns the history of the sampled
individuals, by tracing their ancestral lineages up to the MRCA,
most recent common ancestor (e.g., Nielsen and Slatkin, 2013;
Wakeley, 2009).

One might think that the coalescent theory can be directly
applied to cancer cells due to the obvious analogy; all cancer cells
should follow a simple genealogy up to their MRCA. However, the
direct application of the standard population genetics (i.e., organ-
ismal population genetics) to a cancer cell population may not be
exactly correct because of some fundamental differences in the
propagation system, as we explain below (see also Sidow and
Spies, 2015).

In organismal population genetics, the process can be spec-
ified by the expected number of offsprings for each individual,
namely, the fitness (e.g., Crow and Kimura, 1970; Ewens, 1979). In
the Wright–Fisher model with N haploids (Fisher, 1930; Wright,
1931), all individuals are randomly replaced every generation, and
individuals with higher fitness likely produce more offsprings. In
the Moran model (Moran, 1962), individuals are replaced one by
one, that is, one step consists of a coupling event of birth and death;
one dead individual is replaced by the offspring of one randomly
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chosen individual from the population allowing self-replacement.
Consequently, all individuals are on average replaced in N steps,
which roughly correspond to one generation in the Wright–Fisher
model. It has been well known that theoretical results under the
two models are nearly identical in various cases (e.g., Crow and
Kimura, 1970; Ewens, 1979; Wakeley, 2009; Bhaskar and Song,
2009). Through this random reproduction process either in the
Wright–Fisher orMoranmodel,mutations that arise in the popula-
tionwill fix or get extinct by the joint action of randomgenetic drift
and selection. A mutation is defined as adaptive when it increases
the fitness of the carrier individual.

The evolutionary process of a cancer cell population does not
follow such a simple replacement system. Fig. 1 illustrates the
process from cancer initiation, progression to the following rapid
growth, which may be roughly divided into two major phases,
and the applicability of organismal population genetics may differ
depending on the phase. The first phase (Phase I) from cancer initi-
ation to initial progression could be well handled under the organ-
ismal population genetic framework (Komarova et al., 2003; Iwasa
et al., 2004; Michor et al., 2004). This phase is commonly modeled
in a constant-size population of cells. Most theoretical models for
cancer initiation suppose that a tissue consists of a number of small
compartments of cells and that cancer initiation can occur in a
compartment. The system starts with a normal compartment with
a certain number of asexually reproducing normal cells, which is
denoted by N0. N0 is usually assumed to be constant because the
number of cells in a healthy tissue is maintained roughly constant
by homeostatic systems, that is, cell division occurs when needed.
The Moran model is more suitable to apply to this process than
the Wright–Fisher model because it can be modeled such that one
cell death asks for one cell division. Indeed, the Moran model has
been frequently used to explore a number of problems on cancer
initiation (reviewed in Michor et al., 2004). One of the major
problems is how a cancer initiates. A compartment of a normal
tissue could become a cancerwhen oncogenes are activated and/or
tumor-suppressor genes (TSGs) are inactivated. It is believed that
at least severalmutational alternations in cancer genes (oncogenes
and TSGs) are required for the formation of a parental cancer cell.
Such accumulation of mutations in cancer genes could allow a cell
to acquire typical behaviors of cancer cells, for example, avoiding
apoptosis (programmed cell death) that makes it difficult to main-
tain the equilibrium between birth and death in the compartment,
thereby shifting towards uncontrolled proliferation (neoplasia).
There are a large body of theory only for the fixation process of
mutations in cancer genes, especially for the inactivation of TSGs,
perhaps because the problem is mathematically too simple for the
activation of oncogenes (Michor et al., 2004). Inactivation of a TSG
involves the fixation of a double-mutant, that is, both alleles have
to be silenced according to Knudson’s two-hit model (Knudson,
1971). This situation is very similar to the fixation process of a
pair of compensatory mutations in organismal population genet-
ics (Innan and Stephan, 2001), and the results are indeed in good
agreement (Iwasa et al., 2004). Thus, it can be considered that
the applicability of organismal population genetics is quite good
in Phase I because the assumption of a constant-size population
roughly holds so that the stochastic process through random ge-
netic drift works as organismal population genetics predicts.

By contrast, in the second phase (Phase II) where cells have
acquired extraordinary high proliferative ability, the population
grows very rapidly, and the stochastic process is less important
for changing allele frequencies because most cells have very low
death rates by avoiding apoptosis and their cell divisions occur
independently of each other. As a consequence, a fixation of adap-
tivemutation hardly occurs in a cancer cell population because the
spread of an adaptive mutation does not necessarily kill other cells
with lower reproductive rates, as has been pointed out by Sidow

Fig. 1. Illustrating the model of the growth of a cancer cell population.

and Spies (2015). This reproducing system is quite different from
that organismal population genetics supposes.

The behavior ofmutations in an exponentially growinghas been
well studied since Luria and Delbrück (1943) who investigated
the evolutionary process of resistance mutations in a bacterial
population (see also Kessler and Levine, 2013). The model handles
neutral mutations in an exponentially growing population, which
will confer selective advantages after an environmental change
(e.g., viral infection). Models with stochastic processes taken into
account have been explored by Kessler and Levine (2013) and An-
tal and Krapivsky (2011). The Luria–Delbrück model thus provides
the basis for exploring the behavior of driver and passenger muta-
tions in a cancer cell population (e.g., Kansal et al., 2000; Haeno et
al., 2007; Antal and Krapivsky, 2011; Durrett et al., 2011; Foo and
Leder, 2013; Bozic et al., 2016). Most of these works focus on the
number of mutations per cell, the evolutionary ‘‘waves’’ of driver
mutations or more complicated tree structure (but see Durrett,
2013, 2015), which may not be straightforward to apply cancer
genomic data, especially when single cell-based sequences are not
available.

To be more applicable to recent cancer genomic data, we here
ask how the well established theory of organismal population ge-
netics can be applied to Phase II assuming an exponential growth.
In particular, we are interested in the allele frequency spectrum
(AFS, or SFS: site frequency spectrum) of passenger mutations in
a cancer cell population. AFS is the summarized information of
genotype data that are frequently used in organismal population
genetics. Under the basic neutral theory of the coalescent for a
constant size population (Kingman, 1982; Hudson, 1983; Tajima,
1983)with the assumption of infinitelymany sites (Kimura, 1969),
the expected AFS can be described in a simple form (Fu, 1995), but
for a non-constant size population, it is not very straightforward
to obtain the expected AFS in a simple closed form. Even with any
complicated demographic setting, the expected AFS can bewritten
as a function of the expectations of coalescent times (Griffiths
and Tavaré, 1994, 1998), but these expectations are not easy to
derive in a simple form in many cases although possible compu-
tationally (Williamson et al., 2005; Polanski and Kimmel, 2003;
Polanski et al., 2003). AFS provides substantial information on
the past demography, making it possible to infer various demo-
graphic parameters including population size changes and migra-
tion rates (Nielsen, 2000; Adams and Hudson, 2004; Williamson
et al., 2005; Gutenkunst et al., 2009; Bhaskar et al., 2015; Gao and
Keinan, 2016).

In this article, we consider a model of a rapidly growing cancer
cell population for exploring how mutations accumulate within
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