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Matrix projection models are a central tool in many areas of population biology. In most applications,
one starts from the projection matrix to quantify the asymptotic growth rate of the population (the
dominant eigenvalue), the stable stage distribution, and the reproductive values (the dominant right and
left eigenvectors, respectively). Any primitive projection matrix also has an associated ergodic Markov
chain that contains information about the genealogy of the population. In this paper, we show that these
facts can be used to specify any matrix population model as a triple consisting of the ergodic Markov
matrix, the dominant eigenvalue and one of the corresponding eigenvectors. This decomposition of the
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Genealogies i . ! . ' - > POSITION
Collapsing projection matrix separates properties associated with lineages from those associated with individuals.
Reproductive value It also clarifies the relationships between many quantities commonly used to describe such models,

Elasticities including the relationship between eigenvalue sensitivities and elasticities. We illustrate the utility of
such a decomposition by introducing a new method for aggregating classes in a matrix population model
to produce a simpler model with a smaller number of classes. Unlike the standard method, our method

has the advantage of preserving reproductive values and elasticities. It also has conceptually satisfying

properties such as commuting with changes of units.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Many simple models in population biology take the following
form: a non-negative vector gives the current abundances of types
within the population; then, to determine the abundances of types
at some future time, one multiplies this vector by a non-negative
matrix capturing the interconversion and reproductive rates of
the types. Examples include models of deterministic mutation—
selection balance in population genetics (where the types cor-
respond to genotypes, Nagylaki, 1992 Chapter 2; Biirger, 2000
Chapter 3) and models of spatially structured populations (where
the types correspond to demes, Rousset, 2004). The most common
use of such models is in the ecological and demographic literature,
where the types correspond to age ranges or developmental stages.
In this last context, such models are commonly known as “matrix
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population models” and they play a critical role in both ecologi-
cal theory and applications to population management (Caswell,
2001).

In the ecological or demographic context, the entries in the
update or projection matrix are typically estimated based on ob-
servations from some natural population (Salguero-Gémez et al.,
2015; Salguero-Gomez et al., 2016). To better understand the dy-
namics of the population, one then calculates various descriptors
of the resulting model such as the asymptotic growth rate of the
population, the generation time, the asymptotic distribution of
type frequencies, etc. (for a more complete list, see e.g. Cochran and
Ellner, 1992; Caswell, 2001). Here, we provide a method to move
in the opposite direction: given certain descriptors of the popu-
lation, we construct the corresponding projection matrix. Besides
providing a means to construct projection matrices with specified
properties, our method provides a unifying perspective on the
theory of matrix population models by clarifying the relationships
between various commonly used descriptors.

The key idea is that any matrix population model is completely
determined by the specification of (1) its asymptotic growth rate,
(2) its stable stage distribution and (3) a Markov chain describing
the sequence of classes visited when we consider the lineages of
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individuals within the population. While this viewpoint is per-
haps implicit in the classical literature (Demetrius, 1974, 1975;
Tuljapurkar, 1982, 1993), its power has not been sufficiently ap-
preciated because the strength of the connections between this
genealogical Markov chain and other population descriptors has
only recently come to light. In particular, recent work has re-
vealed that certain hitting times on this genealogical Markov chain
determine the generation time (Bienvenu and Legendre, 2015;
Lehmann, 2014), while the asymptotic frequencies of the transi-
tions of this Markov chain give the elasticities of the asymptotic
growth rate with respect to the entries of the projection matrix (Bi-
envenu and Legendre, 2015). Since an ergodic Markov chain is
uniquely specified by the asymptotic frequencies of its transitions,
this means that if we specify the asymptotic growth rate, stable
stage distribution and matrix of eigenvalue elasticities, we can
immediately write down the unique projection matrix with these
desired characteristics.

This construction provides a great deal of clarity, particularly
concerning the interpretation and biological meaning of eigen-
value elasticities. Indeed, merely recognizing that the matrix of
elasticities is given by the asymptotic transition frequencies of the
genealogical Markov chain makes several facts obvious that are
otherwise rather mysterious from a classical perspective (Bien-
venu and Legendre, 2015). For instance, one can show that the total
of the entries of the elasticity matrix must sum to one by either
direct calculation (de Kroon et al., 1986) or by an appeal to Euler’s
Theorem for homogeneous functions (Mesterton-Gibbons, 1993).
However, recognizing the elasticities as the asymptotic transition
frequencies of a Markov chain make it obvious that they sum to
one, since the asymptotic frequencies of the transitions form a
probability distribution (the chain must always transition from one
state to another). Similarly, the row sums of the matrix of elastic-
ities equal its column sums (van Groenendael et al., 1994) due to
the simple fact that at stationarity the probability of arriving in a
state must equal the probability of exiting that state. Furthermore
these row and column sums are just the class reproductive values,
which when appropriately normalized are themselves just the
asymptotic frequencies of the classes visited by the genealogical
Markov chain.

The present work shows how a Markov chain perspective can be
carried further to illuminate other aspects of the theory of matrix
population models. For instance, it is helpful to classify descriptors
of the matrix population models in terms of their dependencies on
the triple of growth rate, stable stage distribution, and genealogical
Markov chain: in our parametrization, elasticities depend only
on the genealogical Markov chain, whereas the sensitivities of
the asymptotic growth rate to perturbations in the entries of the
projection matrix do not depend on the asymptotic growth rate but
do depend on both the genealogical Markov chain and the stable
stage distribution. Similarly, whereas matrix population models
most frequently track the number of individuals in a given class,
they can also be written in terms of other units such as the biomass
present in each class. It turns out that specifying the stable stage
distribution is equivalent to making a choice of units, so that, for
example, the matrix of sensitivities depends on the choice of units
whereas the matrix of elasticities does not. Indeed, the genealogi-
cal Markov chains arise by expressing the matrix population model
in units of reproductive value, so that the choice of stable stage
distribution can be fruitfully viewed as determining the conversion
factor between reproductive value and number of individuals. That
is, two models can have the same genealogical Markov chain and
asymptotic growth rate but different stable stage distributions
because of different choices concerning how reproductive value is
packaged into individuals.

To demonstrate the power of this approach, we present a new
solution to the problem of how to aggregate states in a matrix pop-
ulation model. This problem is important for two reasons. First, it

has long been known that estimates of various population descrip-
tors depend on the number of organismal states used in the matrix
population model (Silvertown et al., 1993; Enright et al., 1995;
Benton and Grant, 1999; Ramula and Lehtild, 2005; Salguero-
Gomez and Plotkin, 2010; Picard and Liang, 2014). As a result,
when comparing matrix projection models of different species, the
dimensionality of the projection matrix is sometimes reduced by
aggregating or “collapsing” multiple states into one so that the
dimensionality is the same for all species being compared (Enright
et al., 1995; Salguero-Gémez and Plotkin, 2010). Second, because
one needs to observe multiple transitions between pairs of classes
to accurately estimate vital rates, there is a trade-off between
error in estimating the vital rates and the degree of within-state
heterogeneity that is neglected by the model (Vandermeer, 1978;
Moloney, 1986; Caswell, 2001). Thus, some degree of collapsing
necessarily arises in the construction of matrix population models,
a defect which in part motivated the proposal of integral projection
models (Easterling et al., 2000).

The standard method for collapsing states in matrix population
models was proposed by Enright et al. (1995) and generalized
by Salguero-Gomez and Plotkin (2010). It essentially assumes that
the population is at its stable stage distribution and then aggre-
gates a group of classes by considering what we would observe if
we did not distinguish between classes within this collapsed group.
Remarkably, this procedure preserves both the asymptotic growth
rate and the stable stage distribution (Hooley, 2000; Salguero-
Gomez and Plotkin, 2010). However, its effects on reproductive
values and elasticities are poorly characterized and can be sub-
stantial (Enright et al., 1995; Benton and Grant, 1999; Ramula and
Lehtild, 2005; Salguero-Gémez and Plotkin, 2010; Picard and Liang,
2014).

Here we show that this behavior arises because the stan-
dard method, while preserving the stable stage distribution and
asymptotic growth rate, fails to preserve the genealogical Markov
chain. By applying our decomposition to the projection matrix, we
propose a method wherein the stable stage distribution and ge-
nealogical Markov chain are collapsed separately and subsequently
recombined to construct the collapsed projection matrix. This
method optimally preserves reproductive values, the genealogical
Markov chain, the matrix of elasticities, and the generation time
in addition to the stable stage distribution and the asymptotic
growth rate. The method is also independent of the units used
to describe the population in the sense that, unlike the standard
collapsing method, it commutes with changes of units. We return
to the practical applicability of this new collapsing method in the
Discussion.

2. Genealogical Markov chains associated with matrix popula-
tion models

A matrix population model is given by a non-negative matrix
A = (aj;). The model assumes that if there are n;(t) individuals in
the population of class j at time t, these individuals will make a
contribution of a; n;(t) individuals to the total number of individ-
uals of class i at time t + 1. That is, the dynamics of the population
are governed by the matrix equation

n(t + 1) = An(t), (1)

where n(t) = (n;(t)) is the vector giving the number of individuals
in each class at time t.

While Eq. (1) describes the dynamics of the size and compo-
sition of the population, it is also sometimes useful to consider
the sequence of classes occupied by a particular individual, its
ancestors, and descendants. We begin by reviewing the features of
two Markov chains that capture the dynamics along such lineages.
These ideas are due to Demetrius (1974, 1975), and have been
further exploited in Tuljapurkar (1982, 1993).
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