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a b s t r a c t

Wepropose a numerical approach to study the invasion fitness of amutant and to determine evolutionary
singular strategies in evolutionary structured models in which the competitive exclusion principle holds.
Our approach is based on a dual representation, which consists of the modeling of the small size mutant
population by a stochastic model and the computation of its corresponding deterministic model. The use
of the deterministic model greatly facilitates the numerical determination of the feasibility of invasion as
well as the convergence-stability of the evolutionary singular strategy. Our approach combines standard
adaptive dynamics with the link between the mutant survival criterion in the stochastic model and the
sign of the eigenvalue in the corresponding deterministic model. We present our method in the context
of a mass-structured individual-based chemostat model. We exploit a previously derived mathematical
relationship between stochastic and deterministic representations of the mutant population in the
chemostatmodel to derive a general numericalmethod for analyzing the invasion fitness in the stochastic
models. Our method can be applied to the broad class of evolutionary models for which a link between
the stochastic and deterministic invasion fitnesses can be established.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Bacterial ecosystems are subject to mutations and natural se-
lection. When a mutation occurs, a natural question is to deter-
mine the capability of the mutation to be fixed in the population.
Adaptive dynamics theory proposes mathematical tools to tackle
this question (Metz et al., 1996; Dieckmann and Law, 1996; Geritz
et al., 1998). Among these tools, invasion fitness is a selective value
which allows to determine if amutant population can invade a res-
ident one. The definition of the invasion fitness depends on the
model under consideration (Metz et al., 1992; Metz, 2008): usu-
ally for deterministic models, it is the asymptotic growth rate of
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the population, for stochastic models we choose to define it as the
survival probability of themutant population, thoughwe note that
this is not a standard definition (Campillo et al., 2016, in press).

Here, we propose a general numerical approach to study the
invasion capacity of a mutant population and to determine the
evolutionary singular strategies when the competitive exclusion
principle holds. The method is applied to a mass-structured
chemostat model, for which we have obtained previous mathe-
matical results which provide the necessary background informa-
tion for developing our numerical approach. First developed by
Monod (1950) and Novick and Szilard (1950), the chemostat is a
culture method for maintaining a bacterial ecosystem in continu-
ous growth. Adaptive dynamics in chemostat were studied for un-
structuredmodels in a deterministic context byDoebeli (2002) and
Mirrahimi et al. (2012) and in a stochastic context by Champagnat
et al. (2014).

The choice between stochastic and deterministic models
usually depends on the context of the study: the latter for homo-
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geneous large size populations, the former for small size popula-
tions where randomness cannot be neglected (Fritsch et al., 2015;
Campillo and Fritsch, 2015). The numerical inference of adaptive
dynamics for deterministic models is straightforward compared to
that of stochastic models. For example, for the stochastic mass-
structured chemostat model, the invasion fitness is defined as the
survival probability which is the solution of a functional equation.
The mutant population can invade the resident one if and only if
this survival probability is strictly positive. It is usually difficult to
decide whether a numerical approximation of a survival probabil-
ity is different from zero or not. For the corresponding determin-
istic model, the mutant population dynamics can be modeled as a
population balance equation (Fredrickson et al., 1967; Ramkrishna,
1979; Doumic, 2007; Doumic Jauffret and Gabriel, 2010), and the
feasibility of invasion depends on the sign of the principal eigen-
value of the operator associated to this equation. The latter ap-
proach is more straightforward to apply, compared to evaluating
the positiveness of the survival probability. Campillo et al. (2016,
in press) established a mathematical link between the two in-
vasion criteria for mass-structured growth–fragmentation–death
models, that link considerably simplifies the numerical analysis of
the stochastic version.

In this article, we focus on mutations which affect the division
mechanism of a bacterial population; mutations can affect the
mean proportion of the smallest daughter cell during the division
and/or the minimal mass required for bacterial division. We apply
an evolutionary analysis to determine the best cytokinesis strategy
that the population should adopt in terms of mass division. The
optimal division strategy has been previously studied by Michel
(2005, 2006), in a deterministic context without interactions
between bacteria (through the substrate in our model) and for
strategies focusing only on the proportion of division.

In Section 2, we introduce the models which are considered
for the numerical simulations as well as a model reduction
approach, based on Campillo and Fritsch (2015) and Campillo et al.
(2016). In Section 2.1,we introduce themass-structured chemostat
model where mutations affect the division parameters, namely
the minimal mass for division and the mean proportion of the
smallest daughter cell. In Section 2.2, we reduce the chemostat
model for the mutant population by assuming that the mutations
are rare and the resident population is large. In Section 2.2.1,
we introduce deterministic and stochastic representations for
the reduced model of the mutant population. We present two
definitions of the invasion fitness: the principal eigenvalue of
a growth–fragmentation–death operator in the deterministic
case, and the survival probability of the mutant population
in the stochastic case. We also present the link between the
invasion criteria derived from these two definitions, established by
Campillo et al. (2016). Section 3 presents the numerical methods
that we use for the simulations. We present numerical tests in
Section 4. In Section 4.1, we compare the different models, full
chemostat model vs reduced model and deterministic reduced
model vs stochastic reduced model, in order to numerically justify
the model reduction of the mutant population and to present the
difference between the deterministic and stochastic models. In
Section 4.2, we study the evolution of the one-dimensional trait
representing the mean proportion of the smallest daughter cell in
the division mechanism. In Section 4.3, we extend the approach
presented in the previous section to the case where both the mean
proportion of the smallest daughter cell in the divisionmechanism
and the minimal mass of division evolve simultaneously. We
conclude this article by a discussion in Section 5.

2. The models

This section details a numerical approach, based on common
adaptive dynamics methods as well as mathematical results of
Campillo and Fritsch (2015) and Campillo et al. (2016), which
allows one to analyze evolutionary dynamics in a relatively
complex chemostat model.

Our approach is based on the following models that we will
detail in this section:

• IBM: individual-based model of resident and mutant populations.
This is the full chemostat model in which both resident and
mutant populations are described by a stochastic individual-
based model.
• PDE: deterministic approximation of the IBM. Under a rare mu-

tation assumption, between mutation times, the populations
follow a system of integro-differential equations. This model is
useful when populations are large, which is however not the
case for the mutant population at a mutation time. A challenge
associatedwith thismodel is to determinewhen amutation oc-
curs as the mutations are supposed to be rare.
• r-IBM: reduced individual-based model for the mutant popula-

tion. The resident population is assumed to stay at its station-
ary state, whereas the mutant population is described by an
individual-based model. This model is realistic if the mutations
are sufficiently rare in order for the resident population to reach
its stationary state before the mutation and as long as the mu-
tant population remains sufficiently small to have a neglectable
effect on the stationary state of the resident population.
• r-PDE: reduced deterministic model for the mutant population.

This model is a deterministic approximation of the r-IBM
model: the resident population is assumed to stay at its sta-
tionary state and the mutant population evolves according to
an integro-differential equation. This model may appear to be
unrealistic due to opposing assumptions: the deterministic ap-
proximation is valid in large populations while the reduced
model (constant resident population) is valid for a smallmutant
population. However, this model will prove to be very useful in
the numerical study.

2.1. The chemostat model with mutations

We are interested to study numerically the evolution of amass-
structured population in a chemostat.We suppose that individuals
grow by consuming a resource and divide after reaching a suffi-
ciently large size. Individuals are also removed from the system
due to the output flow of the chemostat. We also assume that dur-
ing the division, mutations can appear in a gene that affects the
minimal mass for division y and/or the mean proportion c of the
smallest daughter bacteria after division (that is the expectation of
the ratio of the size of the smaller of the two daughter cells over the
size of the mother cell before division). A population will then be
characterized by a trait ξ = (y, c) ∈ Ξ which will evolve through
mutations.

The model was originally introduced by Fritsch (2014) and
Campillo et al. (2016). In this model, each individual is character-
ized by its trait ξ = (y, c) and its mass x. The model consists of the
following stochastic events.

(i) Each individual divides at rate b(y, x) into two individuals with
respectivemasses α x and (1−α) x, where the proportion α is
distributed according to a distribution Q (c, dα) = q(c, α) dα,
and
• with probability γ ∈ [0, 1], the daughter cell with mass α x

is a mutant, with trait ξ + h ∈ Ξ , where h is distributed
according to a distribution κ(ξ, h) dh and the daughter cell
with mass (1− α) x inherits the trait ξ of its mother.
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