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a b s t r a c t

There is an ongoing debate about the applicability of chaotic and nonlinear models to ecological systems.
Initial introduction of chaotic population models to the ecological literature was largely theoretical
in nature and difficult to apply to real-world systems. Here, we build upon and expand prior work
by performing an in-depth examination of the dynamical complexities of a spatially explicit chaotic
population, within an ecologically applicable modeling framework. We pair a classic chaotic growth
model (the logistic map) with explicit dispersal length scale and shape via a Gaussian dispersal kernel.
Spatio-temporal heterogeneity is incorporated by applying stochastic perturbations throughout the
spatial domain. We witness a variety of population dynamics dependent on the growth rate, dispersal
distance, and domain size. Dispersal serves to eliminate chaotic population behavior for many of the
parameter combinations tested. The model displays extreme sensitivity to changes in growth rate,
dispersal distance, or domain size, but is robust to low-level stochastic population perturbations. Large
and temporally consistent perturbations can lead to a change in population dynamics. Frequent switching
occurs between chaotic/non-chaotic behaviors as dispersal distance, domain size, or growth rate
increases. Small changes in these parameters are easy to imagine in real populations, andunderstanding or
anticipating the abrupt resulting shifts in population dynamics is important for population management
and conservation.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Although the chaotic systems literature has grown over the
past several decades, the bulk of it resides in the physical sciences
(e.g. fluid dynamics) and is neither written for, nor read by ecolo-
gists. Early conceptual papers introduced chaotic concepts to the
ecological literature (e.g., May, 1973; May, 1976; Schaffer, 1985;
Hastings, 1993; Hastings et al., 1993) but computational limita-
tions at the time restricted such research to simple models that
are difficult to apply to real populations. Here, we revisit and build
upon these earlier models by performing a closer examination
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of a chaotic population within an ecologically applicable frame-
work.We create a chaotic growth-dispersal model with an explicit
1-dimensional spatial component, and detail dynamics for a large
parameter space, examine the fractal-like boundaries between dif-
fering population dynamics regimes, and add stochastic elements
to simulate spatio-temporal heterogeneity and observe the inter-
actions between chaotic dynamics and stochasticity. In this way
we add to the ecologists’ chaotic toolbox by detailing the spectrum
of behaviors possible for such a system. Incorporating enough eco-
logically realistic components insures that themodel dynamics can
be compared to the dynamics of real populations.

Chaos has been detected in many and diverse biological
systems, such as the spread of infectious disease (Sugihara and
May, 1990), marine environments (Glaser et al., 2014), and plant
growth dynamics (Billings et al., 2015). These studies focus on
detection of chaos as a way to understand system stability and
future behavior. There are few examples of directly modeled
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nonlinear populations, but Cushing et al. (2003) provide a thorough
analysis of the nonlinear dynamics of the flour beetle, with both
a nonlinear population model and actual experimental data to
verify the model. We envision our model as a stepping stone for
further direct applications of nonlinearmodels to real populations,
as our generalized model provides a mechanism for deeper
understanding of the full range of dynamics present in a chaotic
population, as well as a means of understanding the biological
cause of behavioral changes in a population as ecologically relevant
parameters change.

For example, harvesting of cod affects both the growth rate and
dispersal of the population along its entire range. For cod in the
Gulf of Maine, surplus production models illustrate how growth
rates first increase (due to density dependence) to compensate
for increased harvesting, and then decrease if the population
is overfished. In heavily depleted, and therefore likely chaotic
conditions (Glaser et al., 2014), the effects of this variability on
cod dispersal (and, thus, availability to the fishery) are poorly
understood and can result in management failures (NEFSC 55th
SAW, 2013). For this reason, a better method for understanding
changes in movement and dispersal in chaotic populations is
essential to sustainable management.

The earliest introduction of chaotic population models to the
ecological literature focused on zero-dimensional (zero spatial
dimension, one-dimensional phase space) single-species models
(May, 1973, 1976). Subsequent models added spatial dimension
in the form of discrete patches, where a certain percentage
of the population in one patch disperses to the adjacent
patch(es) with each iteration of the model (Hastings, 1993;
Kaneko, 1984; Willeboordse, 2003; White and White, 2005).
When enough patches are incorporated, the model simulates a
growth and diffusive dispersal system. However, such models
employ numerical diffusion as a dispersal mechanism, which
permits limited diffusion per iteration/generation, as the coupling
strength parameter must remain small for the validity of the
system (Kaneko, 1989). A subset of the literature expands the
diffusive range by exploring globally coupled patches (Kaneko,
1992; Solé et al., 1992; Willeboordse, 2003, 2002), but these are
limited to an even smaller portion of the population diffusing
into neighboring patches, and each patch receives a uniform
proportion of the population regardless of its proximity to the
parent patch. Additionally, such models largely employ periodic
boundary conditions, an ecologically unrealistic feature (Aiken and
Navarrete, 2014).

Improvements upon the numerical diffusionmodelsweremade
when the diffusive dispersal mechanisms were replaced with dis-
persal kernels (e.g. Ruxton and Doebeli, 1996; Doebeli and Ruxton,
1998; Saravia et al., 2000; Labra et al., 2003). The kernels provide a
more realistic dispersal scenario than discretized diffusion, as the
dispersal distance is easily changed, and neighboring discrete lo-
cations generally receive a larger percentage of neighboring popu-
lations than far away locations.

Many of the aforementioned models share a common model of
growth: the logistic map. The logistic map represents one of the
simplest difference equations with chaotic dynamics, popularized
by Robert May (1976) as a discretization of the logistic equation:

pn+1 = apn(1 − pn),

where a is the growth parameter, n is the discrete time index, and
p is a dimensionless population (in May’s model, for p outside of
the range 0 < p < 1 solutions will diverge and therefore lose
physical meaning). There is no spatial structure in this model. This
‘‘classic logistic map’’ can represent an organism that reproduces
in discrete generations with no overlap (e.g., annual plants, some
anadromous fish, some benthic invertebrates, and many insect
populations). An array of complicated population dynamics result

from this equation, depending on the growth parameter. For 1 <
a < 3 the population reaches steady state after the initial
growth period. As a increases, the population experiences a period
doubling bifurcation cascade until eventually descending into
chaos. Doubling begins for a ≈ 3 and the onset of chaos begins for
a ≈ 3.57 (May, 1976). Beyond the beginning of chaos, the logistic
map has pockets of periodicity at special values of 3.57 < a < 4,
e.g., a = 3.835 exhibits a period-3 population cycle (Strogatz,
1994). The equation has some ecologically impractical constraints,
such as population extinction for a > 4 and p > 1 (May, 1976).

A family of similarly simplistic models exhibit great dynamical
complexity (see May and Oster, 1976), and the Ricker model
displays qualitatively indistinguishable dynamics to the logistic
map (e.g., Andersen, 1991). Indeed, the bifurcation diagrams for
the two models look incredibly similar. Besides displaying chaotic
dynamics over a particular parameter range, these models exhibit
other interesting dynamical behaviors, such as long periods of
transience (e.g. Hastings and Higgins, 1994; Saravia et al., 2000;
Labra et al., 2003).

Our model starts with the classic logistic map as one of the
simplest models of growth. We employ a normalized Gaussian
kernel as the dispersal mechanism, which is a more flexible
and ecologically applicable dispersal framework than discretized
diffusion (and dispersal kernels have a long and established history
of use in the ecological modeling literature, e.g., Chesson and
Lee, 2005). The dispersal kernel has several advantages, such as
decoupling the scale and length of dispersal distance from the
spacing of discrete patches, as well as providing a mechanism to
easily change the dispersal distance.

Gaussian kernels are found in seed dispersal models (e.g., Clark
et al., 1999), planktonic dispersal models (e.g., Byers and Pringle,
2006), and myriad other ecological models. Generally, diffusive-
type dispersal effectivelymodels the random dispersal of offspring
away from parents. As the number of random movements away
from the parent increases, the shape of these random movements
forms a Gaussian. This is called the ‘‘random walk’’ model,
and is appropriate for small animals such as insects (Skellam,
1951). Diffusive-type spread also applies to animals moving over
favorable terrain over multiple generations (Krebs, 2009; Pielou,
1979), or immobile species transported by wind or water (Okubo,
1980).

Although diffusive-type dispersal is a useful simplification,
there exist many alternative dispersal mechanisms, e.g., non-
Gaussian kernels (Kot et al., 1996; Chesson and Lee, 2005; Pringle
et al., 2009) and asymmetrical advective dispersal (Okubo, 1980;
Byers and Pringle, 2006; Lutscher et al., 2010); these will be in-
cluded in our future work. However, for this paper, we start with
the simplest case and limit ourselves to the symmetrical dispersal-
only model. Additionally, we chose to work in a one-dimensional
domain, which is an applicable simplification for certain environ-
ments, including edge communities bounded by two distinct habi-
tats such as riparian, littoral or coastal areas.

We test ecologically relevant absorbing (dissipative) boundary
conditions, and these boundary conditions serve as the basis for
the bulk of our ecological analysis. We additionally test periodic
boundary conditions to provide deeper insight and as an illustra-
tive comparison with previous literature and with the classic lo-
gistic map. However, these boundaries are not ecologically useful
in most real-world systems, as opposite ends of a domain are nei-
ther correlated nor connected. Furthermore, periodic boundaries
cannot serve as a proxy for an infinite domain. An infinite domain
naturally explores the limit of small dispersal (with respect to do-
main size). Because our dispersal distance expresses length relative
to domain size, larger dispersal distances would effectively model
the biologically implausible case of infinite dispersal. Boundaries in
which 5% of the population survives over the boundary edge and
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