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a b s t r a c t

Seed banks are common characteristics to many plant species, which allow storage of genetic diversity
in the soil as dormant seeds for various periods of time. We investigate an above-ground population
following a Fisher–Wright model with selection coupled with a deterministic seed bank assuming the
length of the seed bank is kept constant and the number of seeds is large. To assess the combined impact of
seed banks and selection on genetic diversity, we derive a general diffusionmodel. The applied techniques
outline a path of approximating a stochastic delay differential equation by an appropriately rescaled
stochastic differential equation. We compute the equilibrium solution of the site-frequency spectrum
and derive the times to fixation of an allele with and without selection. Finally, it is demonstrated that
seed banks enhance the effect of selection onto the site-frequency spectrumwhile slowing down the time
until the mutation–selection equilibrium is reached.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Dormancy of reproductive structures, that is seeds or eggs, is
described as a bet-hedging strategy (Evans and Dennehy, 2005;
Cohen, 1966) in plants (Honnay et al., 2008; Evans et al., 2007;
Tielbörger et al., 2012), invertebrates, e.g., Daphnia (Decaestecker
et al., 2007), and microorganisms (Lennon and Jones, 2011) to
buffer against environmental variability. Bet-hedging is widely de-
fined as an evolutionary stable strategy in which adults release
their offspring into several different environments, here specifi-
cally with dormancy at different generations in time, to maximize
the chance of survival and reproductive success, thus magnifying
the evolutionary effect of good years and dampening the effect
of bad years (Evans and Dennehy, 2005; Cohen, 1966). Dormancy
and quiescence sometimes have surprising and counterintuitive
consequences, similar to diffusion in activator–inhibitor models
(Hadeler, 2013). In the following study, we focus more specifi-
cally on the evolution of dormancy in plant species (Honnay et al.,
2008; Evans et al., 2007; Tielbörger et al., 2012) but the theoreti-
cal models also apply to microorganisms and invertebrate species
(Decaestecker et al., 2007; Lennon and Jones, 2011).
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Seed banking is a specific life-history characteristic of most
plant species, which produce seeds remaining in the soil for short
to long periods of time (up to several generations), and it has
large but yet underappreciated consequences (Evans andDennehy,
2005) for the evolution and conservation of many plant species.

First, polymorphism and genetic diversity are increased in a
plant population with seed banks compared to the situation with-
out banks. This is mostly due to storage of genetic diversity in the
soil (Kaj et al., 2001; Nunney, 2002). Seed banks also damp off the
variation in population sizes over time (Nunney, 2002). Under un-
favorable conditions at generation t , the small offspring produc-
tion is compensated at the next generation t + 1 by individuals
from the bank germinating at a given rate. Under the assumption
of large seed banks, the observed population sizes between con-
secutive generations (t and t + 1) may then be uncoupled.

Second, seed banks may counteract habitat fragmentation by
buffering against the extinction of small and isolated populations,
a phenomenon known as the ‘‘temporal rescue effect’’ (Brown and
Kodric-Brown, 1977). Populations which suffer dramatically from
events of decrease in population size can be rescued by seeds
from the bank. Improving our understanding of the evolutionary
conditions for the existence of long-term dormancy and its
genetic underpinnings is thus important for the conservation of
endangered plant species in habitats under destruction by human
activities.

Third, germ banks influence the rate of natural selection in
populations. On the one hand, seed banks promote the occurrence
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of balancing selection for example for color morphs in Linanthus
parryae (Turelli et al., 2001) or in host–parasite coevolution
(Tellier and Brown, 2009). On the other hand, the storage effect
is expected to decrease the efficiency of positive selection in
populations, thus natural selection, positive or negative, would be
slowed down by the presence of long-term seed banks. Empirical
evidence for this phenomenon has been shown (Hairston and
Destasio, 1988), but no quantitative model exists so far. In general
terms, understanding how seed banks evolve, affect the speed
of adaptive response to environmental changes, and determine
the rate of population extinction in many plant species is of
importance for conservation genetics under the current period of
anthropologically driven climate change.

Two classes of theoretical models have been developed for
studying the influence of seed banks on genetic variability. First,
Kaj et al. (2001) have proposed a backward in time coalescent
seed bank model which includes the probability of a seed to
germinate after a number of years in the soil and a maximum
amount of time that seeds can spend in the bank. Seed banks
have the property to enhance the size of the coalescent tree of
a sample of chromosomes from the above ground population by
a quadratic factor of the average time that seeds spend in the
bank. This leads to a rescaling of the Kingman coalescent (Kingman,
1982) because two lineages can only coalesce in the above-ground
population in a given ancestral plant. The consequence of longer
seed banks with smaller values of the germination rate is thus to
increase the effective size of populations and genetic diversity (Kaj
et al., 2001) and to reduce the differentiation among populations
connected by migration (Vitalis et al., 2004; Blath et al., 2013).
This rescaling effect on the coalescence of lineages in a population
has also important consequences for the statistical inference of
past demographic events (Živković and Tellier, 2012). In practice
this means that the spatial structure of populations and seed bank
effects on demography and selection are difficult to disentangle
(Böndel et al., 2015). Nevertheless, Tellier et al. (2011a) could use
this rescaled seed bank coalescent model (Kaj et al., 2001) and
Approximate Bayesian Computation to infer the germination rate
in two wild tomato species Solanum chilense and S. peruvianum
from polymorphism data (Tellier et al., 2011b).

A second class of models assumes a strong seed bank effect,
whereby the time seeds can spend in the bank is very long, that
is longer than the population coalescent time. This latest model
generates a seed bank coalescent (Blath et al., 2016), which may
not come down from infinity and for which the expected site-
frequency spectrum (SFS) may differ significantly from that of the
Kingman coalescent (Blath et al., 2015). In effect, the model of
Kaj et al. (2001) represents a special case, also called a weak seed
bank, where the time for lineages to coalesce is finite because the
maximum time that seeds can spend in the bank is bounded.

In the following we mainly have the weak seed bank model in
mind where the time in the seed bank is bounded to a small finite
number assumed to be realistic for most plant species (Honnay
et al., 2008; Evans et al., 2007; Tielbörger et al., 2012; Tellier et al.,
2011b). Even if we allow for unbounded times a seed may be
stored within the soil, we assume that the germination probability
decreases rapidly with age such that e.g. the expected time a seed
rests in the soil is finite. We develop a forward in time diffusion
for seed banks following a Fisher–Wright model with random
genetic drift and selection acting on one of two genotypes. The
time rescaling induced by the seed bank is shown to be equivalent
for the Fisher–Wright and the Moran model. We provide the first
theoretical estimates of the effect of seed bank on natural selection
by deriving the expected SFS of alleles observed in a sample of
chromosomes and the time to fixation of an allele.

The main difficulty in the present paper is the non-Markovian
character of seedbank models (with the exception of a geometric

survival distribution for seeds, in which case the model can be re-
duced to a Markovian model, see below). The way to deal with this
non-Markovian character is based on a separation of time scales.
The genetic composition of the population only changes on a slow,
so-called evolutionary time scale (thousands of generations), while
being fairly stable on a fast, ecological time scale (tens of gen-
erations). We assume seeds to have a life span corresponding to
this ecological time scale, and thus the seedbank tends to a quasi-
stationary state. The non-Markovian character of the model is
visible at the ecological time scale, while it vanishes on the evo-
lutionary time-scale due to the quasi-steady-state assumption. In
other words we ensure the separation of time scales by assuming
thatmost seeds die after a few generations.Wedemonstrate there-
after that seed banks affect selection and genetic drift differently.

2. Model description

We consider a finite plant-population of size N . The plants
appear in two genotypes A and a. We assume non-overlapping
generations. Let Xn denote the number of type-A plants in
generation n (that is, the number of living type-a plants in this
generation is N − Xn). Plants produce seeds. The number of seeds
is assumed to be large, such that noise in the seed bank does
not play a role (therefore we call the seed bank ‘‘deterministic’’).
As a consequence, the state of the seedbank is deterministic
conditioned on the history of the above-ground population. The
amount of seeds produced by type-A plants in generation n is βAXn,
that of type-a plants βa(N − Xn). The seeds are stored e.g. in the
soil; some germinate in the next generation, some only in later
generations, and some never.

To obtain the next generation of living plants Xn, we need to
know which seeds are likely to germinate. Let bA(i) be the fraction
of type-A seeds of age i able to germinate, and ba(i) that of type-
a seeds. Hence, the total amount of type-A seeds that are able to
germinate is given by
∞
i=1

bA(i)βAXn−i,

and accordingly, the total amount of all seeds that may germinate
in the next generation is
∞
i=1

bA(i)βAXn−i +

∞
i=1

ba(i)βa(N − Xn−i).

The probability that a plant in generation n is of phenotype A
is given by the fraction of type-A seeds that may germinate
among all germinable seeds. The frequency process of the di-allelic
Fisher–Wright model with deterministic seed bank reads

Xn ∼ Bin(N, qn(X•)), (1)

qn(X•) =

∞
i=1

bA(i)βAXn−i

∞
i=1

bA(i)βAXn−i +
∞
i=1

ba(i)βa(N − Xn−i)

.

Next we introduce (weak) selection. The fertility of type-a plants is
given by

βa = (1 − s1) βA,

such that s1 = 0 corresponds to the neutral case. Furthermore, the
fraction of surviving seeds is affected. We relate ba(i) to bA(i) by

ba(i) = (1 − s2) bA(i).

Of course, s2 has to be small enough to ensure that ba(i) ∈ [0, 1].
There are other ways to incorporate a fitness difference in the
surviving probabilities of seeds, but we feel that this is the most
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