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a b s t r a c t

Sequential importance sampling algorithms have been defined to estimate likelihoods in models of
ancestral population processes. However, these algorithms are based on features of the models with
constant population size, and become inefficient when the population size varies in time, making
likelihood-based inferences difficult in many demographic situations. In this work, we modify a previous
sequential importance sampling algorithm to improve the efficiency of the likelihood estimation. Our
procedure is still based on features of the model with constant size, but uses a resampling technique
with a new resampling probability distribution depending on the pairwise composite likelihood. We
tested our algorithm, called sequential importance sampling with resampling (SISR) on simulated data
sets under different demographic cases. In most cases, we divided the computational cost by two for the
same accuracy of inference, in some cases even by one hundred. This study provides the first assessment of
the impact of such resampling techniques on parameter inference using sequential importance sampling,
and extends the range of situations where likelihood inferences can be easily performed.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Under genetic neutrality, the distribution of the genetic poly-
morphism in a sample of individuals depends on the evolution of
the population size through unobserved stochastic processes. Typ-
ically, these stochastic processes describe the evolution of the alle-
les at a given locus of the individuals from a population backward
to their Most Recent Common Ancestor (MRCA). When the pop-
ulation size is constant and finite, Wright-Fisher models describe
this evolution and the coalescent theory approximates these mod-
els when the population size is large. In this context, the history
(genealogy withmutations) of the observed sample is a latent pro-
cess. One of the major challenges to conduct a parametric infer-
ence analysis with these models is computing the likelihood of the
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data at any point φ of the parametric space. Indeed, the likelihood
at φ is the integral of the probabilities of each possible realization
of the latent process. In population genetics, the likelihood of an
observed sample is an integral over the distribution of ancestral
histories that may have led to this sample. In this work, we con-
sider a class of Monte Carlo methods based on Sequential Impor-
tance Sampling (SIS) which provides an estimate of the integral. In
this scheme, the importance sampling distribution proposes paths
of the process among those who contribute the most to the sum
defining the likelihood.

For models of panmictic population with constant size, Grif-
fiths and Tavaré (1994b) described an algorithm wherein a pro-
posal distribution suggests histories of the sample by stepwise
reduction of the data set, either by coalescence of two identi-
cal genes or by removal of a mutation on a single gene lineage.
Stephens and Donnelly (2000, Theorem 1) characterized the op-
timal proposal distribution for a large class of time homogeneous
models, but not for varying population size models. However, in
most cases (even in time-homogeneous models) the optimal dis-
tribution cannot be practically computed and has to be approx-
imated. De Iorio and Griffiths (2004a) developed a method for
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constructing such approximations for any model where the mu-
tation process can be described as a Markov chain on gene types
andDe Iorio andGriffiths (2004b) extended this to subdivided pop-
ulation models. These methods have been further elaborated for
stepwise mutation models in a subdivided population by De Iorio
et al. (2005). The latent process, namely the history of the data, of
models with past changes in population size exhibits inhomogene-
ity in time. Thus the previous theoretical arguments which derive
efficient proposal distributions are no longer applicable in this con-
text. Nevertheless, as shown by Leblois et al. (2014), we can adapt
an importance distribution from the importance distributions of
models with constant size populations. But their simulation tests
demonstrated some limits of the algorithm. Most importantly, un-
der demographic scenarios with strong changes, they face large
computation times due to the large variance of the Monte Carlo
estimate of the likelihood.

Our aim in thiswork is to improve the accuracy of the likelihood
estimation for a given computational cost. One direction could
be to derive a new importance sampling proposal distribution
like Hobolth et al. (2008) did for the infinite site model. In this
paper we chose another direction which consists of resampling
among the paths proposed by the importance distribution. Under
a demographic scenario of constant population size, the likelihood
is a sum of products of probabilities of each event whatever their
time because of the time homogeneity of the latent process. By
contrast, under a varyingpopulation sizemodel, these probabilities
depend on the times of occurrence of the events. Thus we have
to integrate over the possible times of occurrences. It follows that
the whole integral (namely the likelihood of the data) we estimate
with importance sampling in the general demographic case is
an integral over a space of much larger dimension. Because the
efficiency of importance sampling decreaseswith the dimension of
the integral, even if the importance distribution adapted by Leblois
et al. (2014) were the most efficient distribution among a certain
class of distributions, we expect more variance of the likelihood
estimate.

We took the opportunity of the paper to present rigorously
the stochastic model for a rather general demographic scenario in
Section 2. The time inhomogeneous latent process is part of the
folklore in the neutral population genetic literature, but has never
been written down explicitly. In particular, Eq. (6) at the end of
Section 2.2 shows that the integral defining likelihood is of much
larger dimension than in the constant demographic case. Indeed,
when the population size varies over time, the integrals over the
random times cannot be removed, as explained in Section 2.4,
after a presentation of the sequential importance sampling (SIS)
algorithm.

The major contribution of the paper is the addition and the cal-
ibration of the resampling procedure of Section 3 in the SIS algo-
rithm, based on Liu et al. (2001) and Liu (2008). The novelty is
mostly in the choice of the resampling distribution thatwepropose
in Section 3.3, which depends on both the current weight of the la-
tent path and the pairwise composite likelihood (PCL) of the cur-
rent state of the latent process. Section 4presents numerical results
on the likelihood estimates of simulated data sets. These results
highlight the benefit due to the proposed resampling distributions
in the likelihood estimates. We then plug the likelihood estimates
in an inference method presented in Section 5.1. The remainder
of Section 5 highlights how our proposals improve the estimate of
the parameters, and the likelihood surface around the maximum
likelihood estimate used to compute confidence intervals (CIs).We
can thus confirm that the gain due to resampling also benefits to
the demographic parameter estimation. We end Section 5 with a
discussion on cases where the data do not hold much information
regarding the parameter of interest, leading to flat likelihood sur-
faces. Finally we show the relevance of our methods by present-
ing numerical results on a bat data set where strong evidence for

population contraction had been already provided by Storz and
Beaumont (2002). All computations for this work were performed
using an updated version of the Migraine software, available
at http://kimura.univ-montp2.fr/~rousset/Migraine.htm (Rousset
and Leblois, 2007, 2012; Leblois et al., 2014).

2. The stochastic model and its likelihood

To illustrate our method we consider genetic data from
individuals of a single population sampled at time t = 0. Let N(t)
be the population size, expressed in number of gene copies in the
whole paper, t generations away from the sampling time t = 0.
We assume that N(t) is a parametric function of t , see Section 4.1
for examples. In this Section we focus only on data from a given
locus.

2.1. Stochastic model

Kingman (1982)’s coalescent process is the usual model to
describe ancestral relationships between gene copies of the sample
under neutrality in a population of constant, but relatively large
size. We superimpose a mutation model on the coalescent process
to describe gene modifications along lineages. Since the evolution
is neutral, the coalescent is independent of the mutation process.
To describe the resulting process, we introduce a random vector
Ht , indexed by the set of possible types of genes (possible alleles)
E: if A ∈ E, the component Ht(A) counts the number of genes of
type A at time t (i.e., t generations away, backward in time, from
the sampling time) in the genealogy of the sample. The likelihood
of the genetic data is given by the distribution of H0, which cannot
be written as an explicit function of the parameter of interest,
denoted φ.

2.2. Markovian description of the evolution

Actually, we only have at our disposal the following description
of the process Ht forward in time.

Let eA denote the vector indexed by E whose components are all
equal to 0, except the A-component which is equal to one. On one
hand, the probability of a new lineage of type A in the genealogy at
time t − δ, knowing that h is the value of the process at time t , is

P

Ht−δ = h + eA|Ht = h


=
(|h| + 1)h(A)

2N(t)
δ + o(δ) (1)

where |h| =


A∈E h(A) is the total number of lineages at time t
in the genealogy and o(δ) a quantity that is negligible in front of δ
when δ → 0. On the other hand the probability of a mutation of a
gene of type B at time t to a gene of type A at time t − δ, knowing
that h is the value of the process at time t , is

P

Ht−δ = h + eA − eB

Ht = h


= µh(B) pB, A δ + o(δ) (2)

where pB,A is the mutation probability from allele B to allele A
forward in time,µ is the mutation rate per generation per lineage,
and o(δ) is a quantity that is negligible in front of δ when δ →

0. Additionally, when there is only one lineage in the genealogy,
the distribution of the gene type (the allele) is supposed to be
the stationary distribution ψ(·) of the transition matrix p =

{pB,A; B, A ∈ E}:

P

Ht = eA

|Ht | = 1


= ψ(A).

Hence, forward in time (i.e., when t decreases), the coalescent
based model Ht is a pure jump, continuous time Markov process
taking values in the set of integer vectors indexed by E, namely NE .
But the process is time inhomogeneous because the coalescence
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