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a b s t r a c t

Recently, Burden and Tang (2016) provided an analytical expression for the stationary distribution of the
multivariate neutral Wright–Fisher model with low mutation rates. In this paper we present a simple,
alternative derivation that illustrates the approximation. Our proof is based on the discrete multivariate
boundary mutation model which has three key ingredients. First, the decoupled Moran model is used
to describe genetic drift. Second, lowmutation rates are assumed by limiting mutations to monomorphic
states. Third, themutation ratematrix is separated into a time-reversible part and a flux part, as suggested
by Burden and Tang (2016). An application of our result to data from several great apes reveals that the
assumption of stationarity may be inadequate or that other evolutionary forces like selection or biased
gene conversion are acting. Furthermore we find that the model with a reversible mutation rate matrix
provides a reasonably good fit to the data compared to the onewith a non-reversiblemutation ratematrix.

© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The incredible amount of available genome-wide sequence
data (e.g., Mackay et al., 2012; Auton et al., 2015) drives the
development of fast methods to infer evolutionary rate matrices.
The Wright–Fisher model is the standard model in population
genetics (Fisher, 1930; Wright, 1931). However, a full analytical
or numerical treatment is usually intractable, especially when the
population size is large. In this case, allele frequencies become
semi-continuous quantities and may be modeled in terms of a
diffusion process (Kimura, 1964; Ewens, 2004; Durrett, 2008).
Wright was the first to investigate the solution for two alleles
at stationarity, i.e., after the process has evolved for a very long
time (Wright, 1931). Even if stationarity is assumed, mathemat-
ical limitations inhibit an analytical treatment of the multivariate
case for general rate matrices (reviewed in Griffiths and Spanó,
2010), albeit solutions for parent independent mutation models
exist (Griffiths, 1979).

The forthcoming arguments require the establishment of some
notation. Consider a haploid population of constant size N and a
single locus with K alleles {1, . . . , K }. The evolution of this pop-
ulation in the course of time can be described by a discrete-time
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Markov chain with discrete character-space; a lattice of
(N+K−1

K−1

)
points, each ofwhich represents a specific assortment of the alleles
within the population. The trajectory of a population within this
lattice in space–time can be identified with a row vector of the
number of alleles z(τ ) = (z1(τ ), . . . , zK (τ )) in generation τ . It only
hasK−1 independent elements but for convenience allK elements
are kept together.Mutations aremodeled by a time-homogeneous,
K × K mutation probability matrix U with probabilities uab for
a mutation from allele a to allele b in a single generation. Here
and throughout this document a and b denote any of the alleles
{1, . . . , K }. The diagonal elements uaa = 1 −

∑
b: b̸=auab are the

probabilities that allele a does not mutate.
The neutral, K -allelic Wright–Fisher model derives the distri-

bution of the number of alleles in the next generation by sampling
with replacement from the alleles in the present aftermutation has
taken place. In particular (e.g., Ewens, 2004),

z(τ + 1)|z(τ ) ∼ Mult
(
N,

z(τ )
N

U
)

, (1)

where Mult(N, v) is the multinomial distribution with N draws
and probability vector v. An example of a numerically obtained
stationary distribution of this process for K = 4, N = 30 and
moderately largemutation rates (Table 1) is illustrated in Fig. 1. The
parameter values are taken from Fig. 6 in Burden and Tang (2016),
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Fig. 1. Stationary distribution of the neutral Wright–Fisher model for K = 4 (nucleotides A, C , G and T ), N = 30 and moderately large mutation rates (Table 1). Each subplot
illustrates the distribution of allele frequencies when only two alleles are present (the x-axes denote the proportion of the first allele). Blue crosses are the results from a
numerical Wright–Fisher simulation with full

(N+K−1
K−1

)
×
(N+K−1

K−1

)
transition matrix; i.e., small, non-zero probabilities corresponding to tri-allelic and tetra-allelic sites are

omitted. The continuous approximation of Burden and Tang (2016) is in red. Gray squares denote the stationary distribution proposed in this manuscript.

Table 1
Parameters of the simulation (Fig. 1) and estimations with reversible and general mutation rate matrices for the great apes data (Fig. 4). The mutation rate matrix is
Q = Q GTR

+Q flux , where Q GTR and Q flux are determined by Eqs. (6) and (7), respectively. The relation between Q and the mutation probability matrix U is given in Eq. (5).
Note, that the mutation probabilities of the Moran model are twice as large as the corresponding mutation probabilities of the Wright–Fisher model. The order of ab is
AC, AG, AT , CG, CT ,GT .

(πA, πC , πG, πT ) (rab) (φab)

Simulation (0.1, 0.2, 0.3, 0.4) 0.02 · (1, 2, 3, 4, 5, 6) 0.02 · (−0.75, −1.66, 1.625, 3.33, −2.6875, 1.25)
Reversible (0.22, 0.30, 0.24, 0.24) 10−4

· (4.0, 44, 2.2, 4.7, 27, 4.3)
General (0.22, 0.30, 0.24, 0.24) 10−4

· (5.6, 42, 2.2, 4.7, 25, 5.5) 10−5
· (29, −39, 2.2, 6.3, 19, −26)

who provide an approximation for lowmutation rates using diffu-
sion limit arguments.

Here, we present a simple and intuitive derivation of the sta-
tionary distribution with adjusted normalization. We employ an
approximation, which is nor of numerical nor of analytical type but
alters the underlyingmodel itself assuming lowmutation rates (De
Maio et al., 2015). In particular, we use the decoupled Moran
model (Baake and Bialowons, 2008; Etheridge and Griffiths, 2009),
which is mathematically most convenient, and limit mutations to
monomorphic states. An application of our results to population
data from great apes (Prado-Martinez et al., 2013) indicates that
the assumption of stationarity is inadequate or that other evolu-
tionary forces like selection or biased gene conversion are acting.
Furthermore we find that the model with a reversible mutation
rate matrix provides a reasonably good fit to the data compared
to the one with a non-reversible mutation rate matrix.

2. Discrete multivariate boundary mutation model

2.1. Moran model

In the neutral, continuous-time Moran model with mutations,
the rate from state z to (. . . , za−1, . . . , zb+1, . . .) is (e.g., Durrett,
2008)

zazb
N

+ zauab. (2)

Importantly, the dynamics (and therefore also the stationary dis-
tribution) of the diffusion approximation of the Moranmodel with
doubled mutation rates and the Wright–Fisher model have been
shown to be equal (e.g., Wakeley, 2009, p. 58, and Durrett, 2008,
Section 1.5).
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