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a b s t r a c t

A central question in the study of ecology and evolution is: ‘‘Why are there so many species?’’ It has been
shown that certain forms of the Lotka–Volterra (L–V) competition equations lead to an unlimited number
of species. Furthermore, these authors note how any change in the nature of competition (the competition
kernel) leads to a finite or small number of coexisting species. Here we build upon these works by further
investigating the L–V model of unlimited niche packing as a reference model and evolutionary game
for understanding the environmental factors restricting biodiversity. We also examine the combined
eco-evolutionary dynamics leading up to the species diversity and traits of the ESS community in both
unlimited and finite niche-packing versions of the model. As an L–V game with symmetric competition,
we let the strategies of individuals determine the strength of the competitive interaction (like competes
most with like) and also the carrying capacity of the population. We use a mixture of analytic proofs (for
one and two species systems) and numerical simulations. For the model of unlimited niche packing, we
show that a finite number of species will evolve to specific convergent stable minima of the adaptive
landscape (also known as species archetypes). Starting with a single species, faunal buildup can proceed
either through species doubling as each diversity-specific set of minima are reached, or through the
addition of species one-by-one by randomly assigning a speciation event to one of the species. Either
way it is possible for an unlimited number or species to evolve and coexist. We examine two simple and
biologically likelyways for breaking the unlimited niche-packing: (1) someminimum level of competition
among species, and (2) constrain the fundamental niche of the trait space to a finite interval. When
examined under both ecological and evolutionary dynamics, both modifications result in convergent
stable ESSs with a finite number of species. When the number of species is held below the number of
species in an ESS coalition, we see a diverse array of convergent stable niche archetypes that consist of
some species at maxima and some at minima of the adaptive landscape. Our results support those of
others and suggest that instead of focusing on why there are so many species we might just as usefully
ask, why are there so few species?

© 2017 Elsevier Inc. All rights reserved.

Introduction

Hutchinson (1959) in his ‘‘Homage to Santa Rosalia’’ asks ‘‘Why
are there so many species?’’ This succinctly summed up and an-
ticipated the enduring and important question of what promotes
andmaintains biodiversity. The development of the Lotka–Volterra
(L–V) competition equations (Volterra 1926; Volterra 1928; Lotka
1927) and Gause’s (1931, 2003) empirical application of thismodel
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led to Gause’s Principle or the Competitive Exclusion Principle. For
similar species to coexist they must occupy separate niches. With
explicit resource dynamics in models of competition, this general
result requires that the number of coexisting species cannot exceed
the number of distinct resources (including both opportunities and
hazards) (Tilman 1982). In typical consumer-resource models the
niche axis offers discrete resources such as A or B with nothing in
between.

What happens when the niche axis is continuous? Does this
provide an infinite number of resources and hence the potential
for unlimited niche packing? MacArthur (1958) found five species
of warblers dividing up the foliage height and breadth of conifers
— five species and five foliage habitats. Yet, in reality the number
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of habitats recognized by MacArthur was a continuum. The pres-
ence of the five bird species in somewhat discrete and predictable
locations within the tree defined the five habitats. Fewer or more
species would have led to different conclusions. A finite number of
distinct species coexisting on continuous niche axes have led to an
interest in limiting similarity and Hutchinson’s ratios (MacArthur
and Levins, 1967). Key questions that are central to the study of
ecology but for which we still do not have clear answers are: How
similar can two species be to each other and still coexist? Do traits
such as the ratio of body sizes, beak sizes, or other functional
traits associated with close competitors provide useful insights
into community organization and species coexistence?

Just as the Lotka–Volterra competition equations provided use-
ful insights into the coexistence or exclusion of species from a
community, they have provided an equally valuable tool for mod-
eling and understanding eco-evolutionary dynamics (Morris and
Lundberg, 2011) where the number of species and their traits are
allowed to evolve in response to ecological interactions. Rough-
garden (1979) usedGaussian functions for the resource axis (distri-
bution of carrying capacities) and for the competition coefficients
(like competes most with like) to show how unlimited niche pack-
ing can occur along any discrete interval of the resource axis. In
essence, the community of competitors becomes a continuum of
species whose share in the community also follows a Gaussian
curve (Roughgarden, 1979; Barabás et al., 2012).

A number of empirical objections can be raised regarding this
model of unlimited niche packing: sexual reproduction, minimum
viable population sizes, boundaries to the length of resource axes,
deviations from the idealized Gaussian distributions just to name a
few (Gyllenberg and Meszéna, 2005; Barabás et al., 2012). Indeed,
modifications of the L–Vmodel as an evolutionary game have pro-
vided insights into niche coevolution, speciation, and community
structure where the number of species at the eco-evolutionary
equilibrium involve a fixed number of species with discrete traits
(Brown and Vincent, 1987, 1992; Metz et al., 1996; Cohen et al.,
1999; Ripa et al., 2009). Here we build upon and extend these prior
works.We add to priorwork of the L–Vmodelwith unlimited niche
packing by examining the ecological and evolutionary dynamics
that can lead to faunal buildup. This model provides an idealized
model that, while unlikely in nature, can be used as a starting point
for understanding how biodiversity in nature evolves and coexists.
With aworld full of resource continuum,we can rephrase Hutchin-
son’s (1959) observation of ‘‘why are there so many species?’’
to ‘‘why are there so few species?’’. Unlimited niche packing is
possible in theory, and yet not seen in nature. Asking why not
might provide new insights into questions of biodiversity. The L–
V competition evolutionary game with unlimited niche packing
provides an excellent reference model for understanding limiting
similarity, Hutchinson’s ratios, and community organization. It also
complements other game theory models of species coexistence
based on predator–preymodels (Ripa et al., 2009) such as the cyclic
dynamics seen in versions of rock–paper–scissor games (Szolnoki
et al., 2014).

Our goal is to explore Roughgarden’s model of unlimited niche
packing in greater detail that explicitly considers evolutionary
dynamics, and the properties of various convergent stable points
of the adaptive landscape when species numbers fall below that of
the ESS. We will do this as an evolutionary game while preserving
the resource and competition curves proposed by Roughgarden
(1979) and studied extensively by others (Bulmer, 1974; Sasaki
and Ellner, 1995; Sasaki, 1997; Szabó andMeszéna, 2006; Parvinen
and Meszéna, 2009; Barabás et al., 2013; D’Andrea et al., 2013).
The model produces unlimited niche packing and a continuum of
specieswith specific characteristics and population sizes (Meszéna
et al., 2006; Barabás and Meszéna, 2009). What emerges is a
model of faunal buildup (taken as far as 1024 coexisting species)

through continual adaptive speciation as the number of species
grows towards unlimited niche packing . In this model, we show
that any finite number of species will evolve to a convergent
stable, non-ESS, ‘‘niche archetype’’. While mostly demonstrated
by simulations we obtain analytic solutions for the two species
case which allows us to draw explicit conclusions regarding the
effects of niche breadth and competition parameters on character
divergence and population sizes. In going towards an unlimited
number of species, we show that the ultimate contiguous distri-
bution of ‘‘species’’ is a game-theoretic, Nash solution. We show
that the convergent stable community of 1024 species essentially
fits this distribution. We then follow the lead of those (Gyllenberg
and Meszéna, 2005; Barabás et al., 2012) who showed that the
competition functions that permit unlimited niche packing are not
robust. Any modification to the functional form leads to a collapse
of the continuum of coexisting species to finite numbers. Here,
we add eco-evolutionary dynamics to two modifications of the
competition function to study the diversity of species at the ESS,
and faunal buildup to the ESS starting with a one or a reduced
number of species. Finally, we add eco-evolutionary dynamics to
a modified competition function proposed by Leimar et al. (2013)
characterized by the possibility of unlimited niche packing within
the context of convergent stable maxima rather than minima.
Ultimately, the factors that cause the continuum of species to
cease may be the model’s greatest value for understanding what
actually happens in the nitty-gritty of real biological communities
in nature.

An eco-evolutionary Lotka–Volterra model

Following Roughgarden (1979) and Brown and Vincent (1987),
we develop an evolutionary game based on the Lotka–Volterra
competition model. To do this we imagine a continuous valued
trait, u, that can potentially take on any value from negative in-
finity to positive infinity. Carrying capacity, K , is influenced by the
individual’s own strategy, v. We let the vector u = (u1, . . . , un)
denote the different strategies currently found among individuals
within the ecological community. For this paper, we will assume
that the different ui’s represent distinct strategies associated with
different species. Furthermore, we assume that species breed true.
The total number of species currently within the community is n.
The vector x = (x1, . . . , xn) represents the current population sizes
of each of the species such that xi is the population size of species
ui. With these assumptions, we can now write the expected per
capita growth rate (i.e. fitness) of a focal individual using strategy,
v, as a Lotka–Volterra competition game:

G(v,u, x) =
r

K (v)

⎡⎣K (v) −

n∑
j=1

a
(
v, uj

)
xj

⎤⎦ . (1)

We assume that competition is most intense between individ-
uals using the same strategy and that competition between two
species declines as the difference in their strategy values increases.
Like competes most with like. Hence, we let the competition coef-
ficient, a

(
v, uj

)
, be a Gaussian relationship based on the difference

between the focal individual’s strategy and that of the competitor.
The function reaches a maximum of 1 when v = ui and declines as
the strategies of the competitors diverge (Fig. 1A). This yields the
following:

a (v, ui) = exp
[
−

(v − ui)
2

2σ 2
a

]
. (2)

For the carrying capacity we assume a Gaussian relationship
between the individual’s strategy, v, and K . The relationship is
centered on v = 0 such that K (v) reaches a maximum of Km when
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