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A B S T R A C T

The ability to accurately estimate crop planting date and planting progression has major implications in crop
management, crop model applications, and in developing adaptation strategies for future climate change. The
objectives of this study are: 1) identify major factors that determine planting initiation and progression of six
major crops in the U.S. and 2) develop a spatially explicit planting initiation and progression model. The crops
that were evaluated are maize (Zea mays), cotton (Gossypium hirsutum), rice (Oryza sativa), sorghum (Sorghum
bicolor), soybean (Glycine max), and winter wheat (Triticum aestivum). County-level daily planting data from
2005 to 2015 for representative states were obtained from USDA Risk Management Agency. For the five summer
crops, the earliest planting gradually shifts to later dates with increasing latitude and elevation. The trend is
reversed for winter wheat, with planting initiation shifting to earlier dates from south to north and from low to
high elevation. A minimum planting temperature threshold was established for the five summer crops, which
decreases from south to north and from low to high elevation. A maximum planting temperature threshold was
established for winter wheat, which decreases from south to north but increases from low to high elevation. A
spatially explicit temperature model as a function of latitude, longitude and elevation was established to predict
planting initiation, while a soil texture-based soil wetness index predicts planting delays due to excessive pre-
cipitation. The model was calibrated with 2005–2009 data and validated with 2010–2015 data; it provided
sound goodness of fit for planting initiation and weekly planting progression. The spatially explicit model for
planting initiation and progression could be used to guide crop production planning and to improve the planting
date and progression algorithms in crop models for regional simulation analysis.

1. Introduction

Crop planting dates are mostly constrained by rainfall, irrigation,
soil temperature and soil moisture (Hodges et al., 1987; Lauer et al.,
1999; Meyer and Dutcher, 1998; Pathak et al., 2012), and are usually
determined based on crop calendar from historic planting practices and
current weather and soil conditions, especially soil temperature and
moisture (Bondeau et al., 2007; Dobor et al., 2016; Leenhardt and
Lemaire, 2002; Maton et al., 2007; Pathak et al., 2012; Sacks et al.,
2010). Planting usually starts when soil temperature is sufficient to
support rapid seedling emergence and when soil contains sufficient
moisture or soil condition does not hinder field operations (Kucharik,
2008).

Waha et al. (2012) developed a climate-driven algorithm to simu-
late the sowing dates of 11 major annual crops at the global scale, based
on annual temperature and precipitation variation coefficients and
crop-specific temperature requirements. Since their algorithm uses
average monthly climatology variables and assumes a global crop-

specific temperature threshold, its applicability at local scales remains
to be tested. Dobor et al. (2016) evaluated a number of existing and
new methods, based on soil temperature and moisture, for predicting
planting dates for maize and winter wheat in Hungary, but none of the
methods explicitly include geographic information that impacts
planting dates, and thus their applicability to broader geographic re-
gions outside Hungary remains to be evaluated.

In addition to soil temperature and moisture based methods, crop
models are also used to estimate planting dates that maximize yields
(Dobor et al., 2016; Waongo et al., 2014). Stehfest et al. (2007) simu-
lated global production of maize, rice, soybean, and wheat and chose
the month with the highest simulated yield as the optimal planting date
for each crop. Laux et al. (2010) estimated planting dates for maize and
groundnut based on predicted onset of the raining season in Cameroon,
Africa, using fuzzy logic; they combined rainfall amounts, number of
rainy days, and the occurrence of dry spells following the onset of the
raining season and used the resulting planting date estimates as inputs
to the CropSyst model to simulate maize and groundnut yields. In a
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study on the impact of climate change on sorghum yields, Niu et al.
(2009) estimated the date having the greatest likelihood of planting
based on cumulative heat units. Folberth et al. (2012) used a spatially
explicit version of EPIC to estimate optimal planting dates for maize in
sub-Saharan Africa, constrained by observed earliest and latest planting
dates. The authors concluded that accurate simulation of yields require
accurate planting date estimates, particularly for areas having season-
ally bimodal rainfall patterns (Folberth et al., 2012).

In crop production, the decision on when to plant has major impacts
on subsequent crop management, yield and quality (Bannayan et al.,
2013; Dobor et al., 2016; Kucharik, 2006, 2008; Singh et al., 2010).
Early planting can expose a crop to cold spells, which reduce seedling
growth, favor development of seedling diseases and pests, and increase
competition from weeds. On the other hand, late planted crops flower
and mature later, which can expose plants to hot weather that can re-
duce pollination and grain filling (Bannayan et al., 2013) and to higher
pest pressure (Pettigrew, 2010). In addition, crop planting does not
simply occur on an optimal date and is usually spread over a span of
one to several months, due to unfavorable weather and/or equipment
constraints. For example in Texas, rice is usually planted over a 1–2
month planting window at the county level (Wilson et al., 2017). At the
state level, the planting window is even wider with earlier planting in
the southwestern rice counties and progressively later planting in the
southeastern and northern rice counties (Wilson et al., 2017). At the
national level, the spread is even greater (NASS, 2016a). Unfortunately,
region-specific and spatially explicit algorithms for planting initiation
and progression are not available. The objectives of this study are: 1)
identify major factors that determine planting initiation and progres-
sion for six major crops in the U.S. and 2) develop a spatially explicit
planting initiation and progression model for crop production planning
and regional simulation analysis.

Throughout the paper, we refers to Planting Initiation as the earliest
date of planting for a crop in a county, indicating the start of the
planting season, and Planting Progression as the time-dependent cumu-
lative proportion of fields that have been planted from the start of the
planting season in the county, with 100% planting at the end of the
planting season (NASS, 2016a; Wilson et al., 2017). In addition, we
refers to Planting Temperature as the temperature threshold above or
below which the earliest planting in a county is initiated.

2. Methodology

2.1. Data types and sources

Four major types of data were used in this study to develop the
planting date algorithm, including crop planting dates, cropland dis-
tribution, soil, and weather data. Fig. 1 summarizes the data flow,
spatial scale and usage of each data type, with detailed descriptions
below.

The six major crops selected for this study are maize (Zea mays),
cotton (Gossypium hirsutum), rice (Oryza sativa), sorghum (Sorghum bi-
color), soybean (Glycine max), and winter wheat (Triticum aestivum).
Sixteen states were selected for the analysis, including nine for maize
(Georgia, Illinois, Kansas, Mississippi, North Carolina, Nebraska,
Pennsylvania, South Dakota and Texas), six for cotton (Arizona,
California, Georgia, Louisiana, North Carolina and Texas), six for rice
(Arkansas, California, Louisiana, Mississippi, Missouri and Texas), four
for sorghum (Kansas, Mississippi, South Dakota and Texas), seven for
soybean (Arkansas, Illinois, Kansas, Louisiana, North Carolina, South
Dakota and Texas), and five for winter wheat (Kansas, Montana, Ohio,
South Dakota and Texas). The selection of states was based on U.S.
cropland distributions (NASS, 2016b; Wilson et al., 2010; Yang et al.,
2011) and was intended to represent the major geographic distribution
of each crop in the U.S.

Daily data on the number of fields planted in each county from 2005
to 2015 for the selected states were obtained from the USDA Risk

Management Agency (RMA, 2015) through a Freedom of Information
Act request (FOIA, 2017). These planting date data are originally re-
ported by crop producers to USDA Farm Service Agency (FSA) local
county office or their participating crop insurance agent on behalf of
the Risk Management Agency and are used by the Federal Crop In-
surance Corporation under the Risk Management Agency to provide
U.S. farmers with crop insurance protection (FSA, 2017).

Texas Rice Crop Survey (Wilson et al., 2017) is a program that
collects and reports weekly planting progress and planting acreage data
for all rice counties in Texas. For 2015, total rice acreage in Texas from
the RMA data was 48,731 ha as compared to 52,843 ha from the Texas
Rice Crop Survey, accounting for more than 92% of the acreage re-
ported from Texas Rice Crop Survey. The rice planting progression in
2015 from the RMA data also closely matched the reported weekly
planting progression from Texas Rice Crop Survey. These results sug-
gest the RMA data for rice is representative of the reported rice acreage
and planting progression. It is reasonable to assume the same high data
quality for other years and other 5 crops. As a further illustration of the
extensive data coverage, total acreage included in the 2015 RMA data
are 12.4, 3.0, 1.0, 2.0, 8.4 and 7.8 million ha for maize, cotton, rice,
sorghum, soybean, and winter wheat, respectively; the corresponding
total number of field units are 498, 119, 22, 87, 366, and 261 thou-
sands, respectively, indicating sufficient data volumes for the devel-
opment of the planting date algorithm in this paper.

County-level planting initiation and progression for each crop in
each year and county were extracted from the daily planting data
(Fig. 1D). Crop field distribution in a county was based on NASS 2013
cropland data (NASS, 2016b) with field size reconciled using the
method of Yang et al. (2014) (Fig. 1A). Daily weather data (max and
min air temperatures, precipitation, and solar radiation) for each field
were obtained from the closest weather station in the iAIMS (Integrated
Agriculture Information Management System) climatic database
(Wilson et al., 2007; Yang et al., 2010) (Fig. 1C). Soil data for each field
was based on Soil Survey Geographic (SSURGO) database (NRCS,
2010), which is integrated into iAIMS soil database (Yang et al., 2011)
(Fig. 1B).

The Soil Climate Analysis Network (SCAN), administered by the
NRCS National Water and Climate Center, consists of approximately
200 stations across the U.S. that automatically collect hourly data on
soil moistures and temperatures (NRCS, 2017). But the density of the
stations is rather low as compared to the number of climatic stations
with air temperatures in iAIMS climatic database (more than 10,000
stations in the U.S.). Daily soil temperature at 10 cm depth was thus
estimated based on daily air temperature from iAIMS weather stations
using the method of Potter and Williams (1994), which first calculates
soil surface temperature as a function of daily max and min air tem-
peratures, plant biomass and residue, and total daily solar radiation
using equations (12–16) and then calculates soil temperature at a
specific depth as a function of yesterday’s soil temperature, current soil
surface temperature, soil bulk density and water content using equa-
tions (6–11) in Potter and Williams (1994). Since soil is usually bare at
the time of planting, no plant biomass and residue were assumed. It was
also assumed that soil water content was at its 50% holding capacity.
Since the Potter and Williams (1994) method usually underestimates
soil temperatures at very low air temperatures, the following equation
was developed to correct the underestimation

TUnder Estimation = − 13.6262/(1 + exp((T+ 14.4569)/5.7745)) (R2 =
0.63),

where TUnder Estimation (°C) is the correction for underestimation for soil
temperature T (°C) using the Potter and Williams (1994) method, and
R2 is the proportion of total variation that is explained by the fitted
regression (Zar, 1984). The underestimation was based on observed soil
temperature data in 2010 at 10 cm depth for Bushland, Texas and
Mason, Illinois (NRCS, 2017). Daily soil temperatures at the county
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