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a  b  s  t  r  a  c  t

Crop  models  are  imperfect  approximations  to real world  interactions  between  biotic  and  abiotic  fac-
tors.  In some  situations,  the  uncertainties  associated  with  choices  in  model  structure,  model  inputs  and
parameters  can  exceed  the spatiotemporal  variability  of  simulated  yields,  thus  limiting  predictability.
For  Indian  groundnut,  we used  the  General  Large  Area  Model  for annual  crops  (GLAM)  with an  existing
framework  to decompose  uncertainty,  to first understand  how  skill  changes  with  added  model  complex-
ity,  and  then  to determine  the  relevant  uncertainty  sources  in yield  and  other  prognostic  variables  (total
biomass,  leaf  area  index  and  harvest  index).  We  developed  an  ensemble  of  simulations  by  perturbing
GLAM  parameters  using  two different  input  meteorology  datasets,  and  two  model  versions  that  differ
in  the  complexity  with  which  they  account  for  assimilation.  We  found  that  added  complexity  improved
model  skill,  as  measured  by changes  in the  root mean  squared  error  (RMSE),  by  5–10%  in  specific  pockets
of  western,  central  and southern  India,  but that 85%  of  the  groundnut  growing  area  either  did  not  show
improved  skill  or showed  decreased  skill  from  such added  complexity.  Thus,  adding  complexity  or  using
overly  complex  models  at  regional  or global  scales  should  be exercised  with  caution.  Uncertainty  analysis
indicated  that,  in situations  where  soil  and  air  moisture  dynamics  are  the  major  determinants  of  produc-
tivity,  predictability  in  yield  is high.  Where  uncertainty  for yield  is  high,  the choice  of  weather  input  data
was  found  critical  for reducing  uncertainty.  However,  for other  prognostic  variables  (including leaf  area
index,  total  biomass  and  the harvest  index)  parametric  uncertainty  was  generally  the  most  important
source,  with  a contribution  of  up  to 90%  in  some  cases,  suggesting  that  regional-scale  data  additional  to
yield  to constrain  model  parameters  is  needed.  Our  study  provides  further  evidence  that  regional-scale
studies  should  explicitly  quantify  multiple  uncertainty  sources.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Crop models are imperfect approximations to real world inter-
actions between biotic and abiotic factors, mainly designed as tools
that provide information that is useful for farmers, researchers and
policy makers (Affholder et al., 2012; Sinclair and Seligman, 1996).
Such information allows making decisions regarding changes in
cropping systems at different spatio-temporal scales, with var-
ied degrees of confidence (Challinor et al., 2014). As confidence in
crop modelling outcomes depends on the errors and uncertainties
associated with the simulation of the system in question, ade-
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quately sampling the model and parameter spaces and adequately
addressing issues related to data quality and scaling are critical for
the delivery of robust information (Kennedy and O’Hagan, 2001;
Ramirez-Villegas et al., 2015).

As with environmental models in general, uncertainty in crop
modelling arises from the impossibility to model the system (i.e.,
the cropping system) with complete determinism (Walker et al.,
2003). As a result of the ad-hoc nature of crop model development,
where models are developed to fit a specific purpose (Affholder
et al., 2012), large diversity exists in model structure and com-
plexity (Rivington and Koo, 2011) and hence model structure is
a key source of uncertainty (Asseng et al., 2014; Challinor et al.,
2014). Lack of precision in parameter values is also an important
uncertainty source in crop models. In many modelling applica-
tions, calibrated parameters are rarely sufficiently constrained by
the available observational data, which is in most cases limited to
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crop yield and/or phenology (Iizumi et al., 2009), and this results
in crop model parameterisations that are incomplete and uncertain
(Angulo et al., 2013a). In some cases, parameters are inherited from
other models or crops, are assigned values using expert judgment
(Tubiello et al., 2007), or are left ‘as default’ [e.g., Jalota et al. (2013)
and Lobell et al. (2013)].

Under a variety of situations, the errors and uncertainties asso-
ciated with choices of crop model structure, parameters, and data
sources can exceed the spatiotemporal variability of the system
modelled, thus limiting its predictability, particularly when mod-
els are used beyond their calibration ranges (Koehler et al., 2013;
Li et al., 2015; Montesino-San Martin et al., 2015). For example,
variation in simulation dynamics due to varying model structure
has been shown to increase as environmental conditions differ
more from the observational record (Asseng et al., 2013; Bassu
et al., 2014). Similarly, model parameters and model meteorologi-
cal inputs have been shown to affect the accuracy of simulated yield
across a range of conditions (Tao and Zhang, 2013; Van Bussel et al.,
2011b). Choices in crop model structure or model configuration can
also greatly affect the modelling outcomes that underpin decisions
(Vermeulen et al., 2013; Weaver et al., 2013).

Remarkably, in spite of the emphasis on error and uncertainty
quantification that has accompanied most recent developments
in crop modelling (including the increased use of models outside
their calibration ranges, e.g., as in climate change impact studies),
still only a handful of studies assess multiple uncertainty sources
and about one third appropriately address model error by con-
ducting model evaluation [see Ramirez-Villegas et al. (2015) for
a review on the topic]. Importantly, with the increased generation
of spatially-explicit gridded crop model simulations, not account-
ing for parametric uncertainty and input data scaling may  lead to
systematic bias in estimated crop yield responses to temperature
and precipitation (Challinor et al., 2015). Thereby, studies compar-
atively assessing uncertainties arising from model structure, model
parameters and input data are warranted.

This work focuses on Indian groundnut and uses the General
Large Area Model for annual crops (GLAM, Challinor et al., 2004) in
combination with observed yield and weather data to investigate
two key aspects of prediction: complexity and uncertainty. Specif-
ically, we develop a parameter ensemble by perturbing 30 GLAM
model parameters using two different input meteorology datasets,
and two model versions that differ in the way they account for
assimilation. We  first analyse yield observations and simulations to
determine whether and how skill improves across different regions
depending on the different model structures (warranted complex-
ity), and then decompose the variance of simulated historical yield
and other model prognostic variables (LAI, biomass, harvest index)
to determine the dominant uncertainty sources across the analy-
sis domain. The results of this work contribute insights to enhance
understanding of uncertainty in crop simulation at regional scales.

2. Materials and methods

2.1. Study region

The study area consisted of all 1 × 1◦ pixels (ca. 100 × 100 km at
the Equator) of India where the average cultivated area of ground-
nut in the period 1966–1990 was greater than 0.2% (Challinor et al.,
2003; Mehrotra, 2011). Following Talawar (2004), we  classified all
1 × 1◦ pixels into one of five groundnut growing zones, which are
known to reflect the variation in germplasm grown across India
(Fig. 1). These regions receive different amounts of precipitation
during the monsoon season (June–September, when groundnut is
primarily grown) and have different prevalent soil types.

2.2. Input data

2.2.1. Weather data
Daily meteorological inputs required for GLAM are precipi-

tation, downwards shortwave radiation flux and minimum and
maximum temperatures. In this study, two sets of these four inputs
were used to reflect uncertainty in the choice of input meteorology,
as described below.

The first set (referred to as WTH-A) follows the original GLAM
formulation of Challinor et al. (2004) and consists of observed daily
precipitation data from the Centre for Climate Change Research
(CCCR) of the Indian Institute for Tropical Meteorology (IITM)
(Rajeevan et al., 2005). We downloaded precipitation data from
the CCCR portal (http://cccr.tropmet.res.in/cccr/home/index.jsp,
accessed 1st September 2011) at the native 1 × 1◦ resolution for
the period 1961–2008 (IMD dataset, hereafter). The IMD  dataset
is based on the interpolation of daily rainfall data from 1803 rain
gauges across India (Rajeevan et al., 2006, 2005). We  obtained
maximum and minimum monthly temperatures from the Cli-
matic Research Unit (CRU) dataset at 0.5◦ (CRU-TS3.0 at http://
www.cru.uea.ac.uk/cru/data/hrga, accessed 1st September 2011)
(Mitchell and Jones, 2005). We  first scaled the CRU data onto
the 1 × 1◦ grid using area-weighted averages and then linearly
interpolated to daily values using middle days of the months.
Finally, we  gathered daily total downwards shortwave solar radia-
tion data from the open-access version of the European Centre for
Medium-Range Weather Forecasts (ECMWF) 40+ Reanalysis (ERA-
40) (Uppala et al., 2005), available at http://data-portal.ecmwf.int/
data/d/era40 daily/ (accessed 1st September 2011) and then scaled
it onto the 1 × 1◦ grid using nearest-neighbour interpolation.

The second set (referred to as WTH-B) is the Water and
Global Change (WATCH) Forcing Dataset (WFD), fully described by
Weedon et al. (2011). The WFD  is a global sub-daily time-step grid-
ded dataset at half-degree resolution for the period 1958–2001,
developed by means of bias correction of the ERA-40 reanalysis.
The dataset is of comparable quality to that of Sheffield et al. (2006),
and is amongst the gridded datasets used in global and regional
crop modelling frameworks (Elliott et al., 2014; Ruane et al., 2015).
For a complete description and analysis of the dataset the reader is
referred to Weedon et al. (2011, 2010). We downloaded daily data
for total precipitation, downward shortwave radiation, and maxi-
mum and minimum temperatures from the WFD  website (https://
gateway.ceh.ac.uk/home, accessed 15th June 2013) and aggregated
them to the study resolution (1 × 1◦).

2.2.2. Soil data
Spatially variable values of permanent wilting point (�ll), field

capacity (�ul) and saturation (�sat) moisture contents were derived
from the 30 arc-sec Harmonized World Soil Database (HWSD)
(Batjes, 2009; FAO, 2012). The spatially explicit properties in the
soil classes occurring within the analysis domain were calculated as
the area-weighted-average of each soil profile in each 1 × 1 grid cell
of the analysis grid (see Fig. 1). This resulted in three (one for each
soil moisture limit) spatially explicit continuous 1 × 1◦ datasets that
covered the analysis domain. In each grid cell, a GLAM simula-
tion was always associated with its three respective soil moisture
content values.

2.2.3. Planting dates
Planting windows used here were those of the global study of

Sacks et al. (2010). The dataset of Sacks et al. (2010) is the first global
dataset with georeferenced crop planting and harvesting informa-
tion. The data were aggregated onto the 1 × 1◦ analysis grid using
area-weighted averages and carefully checked for inconsistencies
to ensure planting windows followed the monsoon dynamics.
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