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a  b  s  t  r  a  c  t

Data  acquisition  for parameterization  is one  of the most  important  limitations  for  the  use  of  potato  crop
growth  models.  Non-destructive  techniques  such  as  remote  sensing  for gathering  required  data  could
circumvent  this  limitation.  Our  goal  was to  analyze  the  effects  of  incorporating  ground-based  spectral
canopy  reflectance  data  into  two light  interception  models  with  different  complexity.  A dynamic-  hourly
scale-  canopy  photosynthesis  model  (DCPM),  based  on  a non-rectangular  hyperbola  applied  to sunlit
and shaded  leaf  layers  and  considering  carbon  losses  by  respiration,  was  implemented  (complex  model).
Parameters  included  the  light  extinction  coefficient,  the  proportion  of  light  transmitted  by  leaves,  the
fraction  of incident  diffuse  photosynthetically  active  radiation  and  leaf  area  index.  On the  other  hand,
a  simple  crop  growth  model  (CGM)  based  on daily  scale  of  light  interception,  light  use efficiency  (LUE)
and harvest  index  was  parameterized  using  either  canopy  cover  (CGMCC) or  the  weighted  difference
vegetation  index  (CGMWDVI).  A spectroradiometer,  a chlorophyll  meter  and  a multispectral  camera  were
used  to derive  the  required  parameters.  CGMWDVI improved  yield  prediction  compared  to CGMCC.  Both
CGMWDVI and  DCPM  showed  high  degree  of accuracy  in  the  yield  prediction.  Since  large  LUE  variations
were  detected  depending  on the  diffuse  component  of  radiation,  the  improvement  of  simple  CGM  using
remotely  sensed  data  is contingent  on  an  appropriate  LUE  estimation.  Our  study  suggests  that  the  incor-
poration  of  remotely  sensed  data  in  models  with  different  temporal  resolution  and  level  of  complexity
improves  yield  prediction  in  potato.

© 2016  Elsevier  B.V.  All  rights  reserved.

Abbreviations: D, duration of leaf senescence; DCPM, dynamic- hourly scale- canopy photosynthesis model; DTY, dry tuber yield; LUE, light use efficiency; CGM, crop
growth model; CGMCC, crop growth model parameterized using canopy cover; CGMWDVI, crop growth model parameterized using weighted difference vegetation index; Chl,
total  chlorophyll concentration per leaf area; Chl max , maximum total chlorophyll concentration per leaf area; fi , biomass fraction of organ i; FLINT ,  fraction of PAR intercepted
by  the foliage; G, growth respiration; Gi , glucose requirement of organ i (leaves stems tubers roots); I0, PAR on a horizontal plane; Ileaf , incident PAR on a leaf; k, light extinction
coefficient; Ki , maintenance respiration coefficient of the plant organ i; LAI,  leaf area index; M,  asymptotic maximum of the harvest index; m,  leaf transmittance; MAE, mean
absolute error; MCC, maximum canopy cover; NIR, near-infrared band; NDMA,  net dry matter assimilation rate; Pleaf , leaf photosynthetic rate; Pcanopy , gross canopy primary
productivity; Pmax, photosynthesis at light-saturated conditions; PAR, photosynthetically active radiation; PAR0, PAR extra-terrestrial irradiance on a plane; Q10,  temperature
sensitivity factor; R, red band; Rm , maintenance respiration; RMSE, root mean square error; RS, remote sensing; RRMSE, relative RMSE;  Sdf , diffuse flux of global radiation; T,
daily  average temperature; te , beginning of senescence; tm , time at maximum WDVI increment; Tr , reference temperature; TT, thermal time; t50, time when light interception
is  reduced to 50%; VI, vegetation index; WDVI, weighted difference vegetation index; Wi , dry biomass of organ i; Wt , total dry biomass in the current day; Ym , maximum
value  of WDVI; �, photosynthetic efficiency; �, sharpness of the knee of the curve Pmaxvs.Ileaf; �, solar zenithal angle; �Z, sun angle above the horizon; �Pcanopy, balance of
the  assimilated carbon via daily Pcanopy.
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1. Introduction

Crop growth modeling is an important tool for yield predic-
tion under different management and environmental conditions
(Boote et al., 1996; Murthy, 2004). The integration of biomass
accumulation into yield along high time resolutions is an advan-
tage of crop growth models (CGM). However, these models are
confined to short spatial scales (field or local scales) since there
is no mechanistic approach developed for the incorporation of
spatial heterogeneity (Moulin et al., 1998). Ground, air- and space-
borne remote sensing (RS) data have been used to reduce the
bias generated by the scale dependency of modeled attributes
(Moulin et al., 1998; Fischer et al., 1997). Thus, the incorporation
of RS to CGM to improve yield predictions has produced reliable
results in crops like sugar beet (Guérif and Duke, 2000; Launay
and Guerif, 2005), wheat (Clevers et al., 2002; Oppelt, 2010), rice
(Wang et al., 2014) and maize (Jongschaap, 2007). If some draw-
backs (atmospheric corrections, soil interferences, among others)
are overcome (Delécolle et al., 1992), RS is a very useful tool to
describe some biophysical characteristics of the vegetation, like
plant chlorophyll concentration and leaf area index (LAI), which are
crucial components of CGM (Jongschaap, 2006, 2007; Dorigo et al.,
2007). Chlorophyll concentration is a plant trait related to light
absorption-interception, N content and photosynthesis. Vegetation
indexes (VI), determined through RS, have been related to chloro-
phyll concentration (Gitelson et al., 2003; Almeida and De Souza,
2004; Jongschaap, 2006, 2007; Cammarano et al., 2011; Shrestha
et al., 2012; Schlemmer et al., 2013) and these indexes have been
incorporated into CGM with important improvements in the pre-
diction of yield (Jongschaap, 2007; Oppelt, 2010; Wang et al., 2014).
LAI, i.e. the leaf area per unit ground surface area, has been broadly
related with VI using statistical approaches despite the limitation
imposed by the near-infrared reflectance saturation occurring at
below the maximum LAI values (Dorigo et al., 2007). Using statis-
tical (Jongschaap, 2007) and physical (Fischer et al., 1997; Guérif
and Duk, 2000; Launay and Guerif, 2005) approaches this variable
has been simulated through a run-time calibration procedure and
radiative transfer model respectively, and incorporated to CGM.

Concerning potato, the fourth most important crop world-
wide (FAOSTAT, 2013), there are 32 different CGMs reported, that
simulate tuber yield under different conditions of water and N
availability and CO2 atmospheric levels (Raymundo et al., 2014).
However, the difficulty of data acquisition remains as a major limi-
tation for the widespread use of the models (Raymundo et al., 2014).
As RS facilitates the monitoring of required vegetation variables, it
could be an important aid to data acquisition. RS indexes in potato
have been related to water status (Moller et al., 2006; Prashar et al.,
2013), chlorophyll concentration through greenness (Zakaluk and
Ranjan, 2006, 2008), canopy cover (Bouman et al., 1992a) and LAI
(Islam and Bala, 2008; Bala and Islam, 2009; Papadavid et al., 2011;
Duan et al., 2014; Fortin et al., 2014). Thus, Jongschaap (2006)
has obtained acceptable predictions of LAI and canopy N content
through the incorporation of RS data to a dynamic model in potato.
However the assessment of whether tuber yield prediction can be
improved by incorporating RS data into models is still a pending
research issue although this incorporation is considered important
to improve the performance of models (Raymundo et al., 2014).
In the present study we use RS-derived parameters to drive some
routines of two simulation models with different levels of com-
plexity: i) an hourly-run dynamic canopy photosynthesis model
(DCPM) based on the estimation of photosynthesis on sunlit and
shaded leaf layers, factoring carbon losses by respiration (com-
plex model); ii) a daily-run CGM based on light interception and
light use efficiency using “big leaf” approach, and carbon parti-
tion (simple model). Our aims were: − to compare the accuracy
of prediction of tuber yield by both models along the growing sea-

son; − to assess the improvement of tuber yield prediction using
RS data as surrogate of actual chlorophyll concentration, canopy
cover and LAI measurements; − to analyze the main drivers that
affect tuber yield. We  hypothesize obtaining a better tuber yield
prediction through the complex model, driven by the incorporation
of key parameters related to photosynthetic performance, bilayer
light interception and photorespiration carbon losses. Since some
authors suggest that RS data (reflectance) is more related to canopy
light interception than canopy cover and LAI (Bouman et al., 1992b),
we hypothesize an improvement in the prediction of tuber yield
using RS-derived parameters.

2. Materials and methods

2.1. Dynamic canopy photosynthesis model (DCPM)

2.1.1. Original model formulation
The net primary productivity simulation model tested in this

study is based on the instantaneous canopy photosynthesis concept
developed by Thornley (2002), which describes mathematically the
assimilation of atmospheric carbon dioxide into plant dry matter as
driven by photon flow. Assuming that leaf photosynthetic response
can be described by a non-rectangular hyperbola model, Thornley’s
model is formulated as (for a detailed description of this model see
Thornley, 2002):

εP2
leaf − Pleaf

(
˛Ileaf + Pmax

)
+ ˛Ileaf Pmax = 0 (1)

Ileaf (LAI) = k

1 − m
I0e

−kLAI (2)

Where Pleaf is leaf photosynthetic rate (kg CO2 m−2 s−1), Ileaf
is photosynthetically active radiation (PAR) incident on a leaf
(J m−2 s−1),Pmax is photosynthesis at light-saturated conditions, �
is photosynthetic efficiency, � determines the sharpness of the knee
of the curve Pmax vs. Ileaf, I0is PAR on a horizontal plane, kis the light
extinction coefficient, LAI is the cumulative leaf area index, and m
is leaf transmittance.

In our adapted model, the accumulation of photosynthates per
leaf area unit was calculated using a numerical integration with
hourly steps. Parameters such as LAI, k, m and the diffuse compo-
nent of incident PAR −considered as constants in Thornley’s model-
were replaced with dynamic parameters that account for the tem-
poral and spatial variability of the photosynthesis process. These
parameters were approximated through remotely sensed data (see
Section 2.3.2).

2.1.2. Incorporation of the dynamic parameters and respiration
Thornley’s model was adapted by converting it from an instan-

taneous canopy photosynthesis calculator into a dynamic one. The
modified model calculates the gross canopy primary productivity
(Pcanopy) by way  of integrating CO2 fixed from plant emergence to
harvest.

k characterizes the light absorption by the canopy and depends
on the type of light, the position and characteristics of the leaves;
it varies during the day according to the solar zenithal angle (�).
Assuming a spherical angular distribution, with leaves distributed
at random within the canopy volume, k varies between 0.5 at noon
and 1 at dawn and sunset, and is defined as (Goudriaan, 1982):

k = 1

2cos
(
�
) (3)

m is calculated by integrating the PAR energy transmitted through
the leaf mesophyll. The light transmittance characterizes the phys-
iological state of the leaf and is an indicator of its pigment
concentration. The transmittance usually represents 10% of the
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