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ARTICLE INFO ABSTRACT

Meteorological conditions are important factors in the development of fungal diseases in winter wheat and are
the main inputs of the decision support systems used to forecast disease and thus determine timing for efficacious
fungicide application. This study uses the Fourier transform method (FTM) to characterize temporal patterns of
meteorological conditions between two neighbouring experimental sites used in a regional fungal disease
monitoring and forecasting experiment in Luxembourg. Three meteorological variables (air temperature, relative
humidity, and precipitation) were included, all conducive to infection of wheat by Zymoseptoria tritici cause of
Septoria leaf blotch (STB) in winter wheat, from 2006 to 2009. The intraday, diurnal, dekadal and intra-seasonal
variations of the meteorological variables were assessed using FTM, and the impact of existing contrasts between
sites on the development of STB was analyzed. Although STB severities varied between sites and years
(P = 0.0003), the results indicated that the two sites presented the same patterns of meteorological conditions
when compared at larger temporal scales (diurnal to intra-seasonal scales, with time periods > 11 h). However,
the intraday variations of all the variables were well discriminated between the sites and were highly correlated
to STB severities. Our findings highlight and confirm the importance of intraday meteorological variation in the
development of STB in winter wheat fields. Furthermore, the FTM approach has potential for identifying mi-
croclimatic conditions prevailing at given sites and could help in improving the prediction of disease forecast
models used in regional warning systems.
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1. Introduction

Integrated disease management based on decision support systems
and disease forecasting models has become important more recently
due to the increased need for sustainable practices in agriculture
(Moreau and Maraite, 2000; Verreet et al., 2000; Audsley et al., 2005;
Langvad and Noe, 2006). Reliable and timely information on plant
fungal diseases epidemics are crucial for optimizing the use of fungi-
cides while ensuring economic benefits (Fones and Gurr, 2015).

Plant disease epidemics of fungal origin result from the interaction
between the pathogens, presence of susceptible hosts, and favourable
meteorological conditions. Meteorological variables are most often the
data used as inputs of disease forecasting models for fungal diseases of
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winter wheat (Triticum aestivum L.). Among the meteorological condi-
tions, air temperature (T), relative humidity (RH), and precipitation
(namely rainfall, R), are by far the most important. Numerous studies
(e.g., Shaw and Royle, 1993; Eyal, 1999; Gladders et al., 2001; Lovell
et al., 2004) have highlighted the effects of T, RH, and R on infection
and progress of Septoria leaf blotch (STB, caused by Zymoseptoria tritici
(Desm.) Quaedvlieg & Crous) in winter wheat. For the development of
STB, T determines the rate at which fungal development and spore
dispersal processes occur (Eyal, 1999; Gladders et al., 2001). A pro-
longed period of T below —2 °C has adverse effects on the fungus re-
sulting in low survival and thus reduces inoculum to infect the wheat
crop (Shaw and Royle, 1993). This, in turn, leads to a late or very slow
development of the epidemic in the following spring even if weather
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conditions are favourable (Lovell et al., 2004; El Jarroudi et al., 2009;
Beyer et al., 2012). RH can affect the rate of plant disease epidemic
development because micro-organisms generally grow (spore germi-
nation and infection) only when there is sufficient moisture
(RH = 60%) (Moreau and Maraite, 1999; El Jarroudi et al., 2009;
Suffert et al., 2011). Rainfall is a key requirement for the development
of STB as it allows for the swelling of pycnidia and aids the dispersal of
spores in splash to the upper leaves of wheat plant (Shaw and Royle,
1993; Lovell et al., 1997; Gladders et al., 2001).

For disease risk assessments at the regional scale, the meteorological
data used as main inputs for forecasting models originate from me-
teorological networks with automatic weather stations (AWS) (Gladders
et al., 2001; Magarey et al., 2001; El Jarroudi et al., 2009; Te Beest
et al., 2009; Beyer et al., 2012; Junk et al., 2016). Most often, these
forecast models are based solely on the meteorological data from the
nearest AWS or interpolated from a set of neighbouring sites. Inter-
polation procedures such as the nearest neighbour method, kriging, co-
kriging, or inverse weighted-distance method are typically performed
(Lam, 1983; Hartkamp et al., 1999; DeGaetano and Belcher, 2007).
Although these schemes are used widely, they do suffer from some
potential sources of error, e.g. difficulty in capturing small scale var-
iation, failure to account for topographical features, etc. Furthermore,
the choice of location for an AWS within a field or the distance between
AWS locations are both factors that hamper accurate forecasting of
fungal diseases at regional scales (Jones et al., 2012). Thus, to develop
reliable disease forecasting models that can be applied efficiently in
operational disease monitoring (i.e. embedded in a decision support
system and applied at sub-regional and regional scales), a detailed
analysis of weather data, both spatially and temporally, is of great
importance (Henshall et al., 2016; Donatelli et al., 2017). Indeed, the
difference in weather conditions between neighbouring wheat fields
(5-15 km, straight line) is often not perceptible, yet crucial in disease
forecast models.

Fourier transform methods (FTMs) constitute one of the most widely
used operations to obtain a spectral representation of a time series of
discrete data samples (Chatfield, 1996; Blommfield, 2000; Brillinger,
2002; Craigmile and Guttorp, 2011; Mikosch and Zhao, 2014). Al-
though they have been used for several and various purposes (e.g.
Estrada-Pena et al., 2014; Mikosch and Zhao, 2014), their application
for weather data analysis and plant disease development has yet to be
fully investigated. In this study we investigate the causes of difference
in STB expression across neighbouring locations based on the analysis
of weather patterns at various temporal scales. First, a comprehensive
theoretical framework of linear spectral analyses based on FTM, along
with a conceptual framework, was devised. Then the approach was
applied to a case study of two neighbouring sites included in a regional
fungal disease monitoring and forecasting experiment.

2. Materials and methods
2.1. Theoretical framework of the Fourier transform method

FTM principles have been discussed extensively (e.g., Jones, 1964;
Bergland, 1969; Chatfield, 1996; Blommfield, 2000). Only some general
principles were summarized in the following paragraphs.

A filtered series Y, is a weighted sum of the time series (the discrete
data samples) X, defined as,
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where the basis numbers a; verify Z ar = 1. The sequence
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a = (ay)kez is called a linear filter. The Fourier transform of the filtered
series, Fy (), is the product of the Fourier transform of the filter a and
the Fourier transform of the original time series X,, that is (Chatfield,
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1996; Blommfield, 2000),
Fy(A) = F;(M)-Fx ().

where A is the frequency, and F,(\) is the Fourier transform of the filter
a given as,
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and Fx (1) is the Fourier transform (or discrete-time Fourier transform)
of the time series X; given for a finite duration sequence of length n by

n-1
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t=0
wherei = +/—1.For 1= ﬂ, k =0,1,...,n — 1, we obtain the discrete
Fourier transform applied to the discrete-time series X; through
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with the corresponding inverse discrete Fourier transform
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where X (k) represents the frequency domain function and X, the time
domain function. Using this pair of formulae, we can move back and
forth between a time representation of data (X;); — ¢ ,.. »—1 and its fre-
quency domain representation &), - o,.., n—1 that is, the discrete
Fourier transform is invertible. Also, it is possible to modify the fre-
quency spectrum in order to change the time representation, i.e. to
allow the filtering.

The Fourier transform of the linear filter a (denoted B) is called the
transfer function of the linear filter. The transfer function B describes
how the amplitude (corresponding to the standard deviation) is trans-
ferred from X to Y, and the quantity |B]?* describes how the energy
(variance) is transferred from the original series X to the filtered series
Y. For a simple moving average filter q defined through a = (ay)kez,
with

1
a, = 2q+1
0

we

if k € {—q,...,+q},
otherwise,
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2.2. Conceptual approach of the FTM

The conceptual approach uses a mathematical function called KZ
transformation (Zurbenko, 1986; Hogrefe et al., 2000) which is based
on a linear filter q. This linear filter is a simple moving average iterated
k times. The function KZ is identified as a function of the variables X, g,
k, where X is a given meteorological variable, g is the linear filter as-
sociated to the moving average, and k refers to the iterations (in our
study k varies between 1 and 3). KZ can be expressed in terms of the
Fourier transform involving a series of equations with a sampling in-
terval (or time frequency) 1/2 At (indeed the time scale is a minimum
of 2 h, thus 1/2 At = 1 h). To find the power transfer function for the
KZ(q, k)-function, the rule of sequential filtering is applied, that is,
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Based on the KZ-function and the filter q, a given meteorological
variable is decomposed in a series of filtered data. For each

k
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