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A B S T R A C T

Process-based crop models are popular tools to evaluate the impact of climate change and agricultural man-
agement on crop growth. Accurate simulation of crop production over large geographic regions using an in-
dividual crop model remains challenging due to different sources of uncertainty. We present a Bayesian model
averaging (BMA) method for a multiple crop-growth model ensemble to provide more reliable predictions of
maize yields in Liaoning Province, northeastern China, which covers an area of 148,000 km2 and has
2200,000 ha of maize. We apply the photosynthesis-oriented WOFOST (WOrld FOod STudy) model, the water-
oriented AquaCrop model and the nitrogen-oriented DNDC (DeNitrification and DeComposition) model to in-
dependently generate original predictions of county-level maize yields. The integrated prediction is achieved
using a linear combination of the three ensemble members using BMA weights. This integrated approach results
in more accurate and precise predictions than any individual model over the entire province. This is because the
BMA framework effectively compensates for the uncertainty of individual model simulation and takes advantage
of each competing model for reliable prediction. Furthermore, the interpretation of the BMA weight values is
also strengthened by comparison with regional precipitation, fertilization and radiation data. We find these
values adequately fit the regional limiting factors, e.g., the AquaCrop model generally has a high weight value in
counties with frequent droughts, while WOFOST is the dominant member in areas with radiation deficit.
Compared with the simple average method and median estimate, the results show that the BMA framework is
powerful in computing the ensemble weights and interpreting the mechanism beyond the observed data.

1. Introduction

Crop growth and food production are sensitive to climate change
(Adams et al., 1998; Xiao et al., 2016). Climatic variability is expected
to increase production risk (Rosenzweig et al., 2014; Fires et al., 2016),
while the food demand from population growth raises concern about
food security (Bloom, 2011). More accurate prediction of food pro-
duction at a large scale is needed for both scientific researchers and
policy makers (Vermeulen et al., 2013; Li et al., 2016). It is therefore of
great importance to understand how crop growth responds to different
environmental components, including climate, soil and management
practices. Given the complex processes and the uncertainty considered,
process-based crop models can be applied as a valuable tool to address
these problems for robust decision making (Tubiello and Ewert, 2002;
Rosenzweig et al., 2013).

Various process-based crop models have been developed and ap-
plied to simulate and evaluate the impacts of environmental factors,
such as water stresses, nutrient deficits, and increasing temperatures

and CO2 concentrations, on the physiological processes of crop growth.
For example, some crop models, including WOFOST (Vandiepen et al.,
1989; van Ittersum et al., 2003), DSSAT (Jones et al., 2003), APSIM
(McCown et al., 1996), AquaCrop (Steduto et al., 2009; Raes et al.,
2009a) and EPIC (Jones et al., 1991), simulate crop growth and yield
development processes using carbon and water as the main driving
forces. Another class of models simulates biogeochemical processes
with coupled water, carbon, nitrogen and phosphorus cycles, such as
Century (Gilmanov et al., 1997) and DNDC (Li et al., 1994). These
biogeochemical models have been widely used for the integrated as-
sessment of sustainable management in agro-ecosystems (Cui et al.,
2014; Zhang et al., 2015). Both of these groups of models have been
applied and evaluated at a field scale and across large geographic re-
gions (de Wit and van Diepen, 2007; Hsiao et al., 2009; Li et al., 2012;
Yu et al., 2014; Chen et al., 2015).

All these models are viewed as imperfect representations of real
natural processes. They vary both in model structure and para-
meterization scheme, which are considered as the dominating
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contributors to the uncertainty in crop growth prediction (Murphy
et al., 2004; Duan et al., 2007). Any particular model may have strength
in simulating some aspects of the crop growth process, but there is no
model that is superior to others under all environmental conditions
(Todorovic et al., 2009; Bassu et al., 2014). Currently, many methods
are used to improve the predictive skill of crop models, including sto-
chastic parameter optimization (Iizumi et al., 2009; Dumont et al.,
2014) and ensemble driving forces (Tao and Zhang, 2013). Despite the
progress made, model structure uncertainty remains an inevitable issue
for individual model simulation. As a result, for large-scale prediction
in a complex environment, model choice remains a major challenge for
reliable prediction. Multi-model ensemble methods have become a
widely accepted approach to improve prediction by adjusting various
biases and taking advantage of complementary individual models
(Raftery et al., 2005; Gupta et al., 2012). While multi-model ensembles
have gained popularity in the fields of hydrology (Mehrotra et al., 2014;
Najafi and Moradkhani, 2015), climate (Sahai et al., 2008), and
economy (Kar et al., 2006; Belyaeva et al., 2014), intensive applications
in crop modeling have not occurred until recently. The Agricultural
Model Intercomparison and Improvement Project (AgMIP, www.agmip.
org) is a good example that links the international climate, crop, and
economic modeling communities to improve crop modeling perfor-
mance and reduce uncertainty (Rosenzweig et al., 2013). Martre
(Martre et al., 2015) used both the mean and median of 27 wheat crop
model simulations in a multi-model ensemble and showed that the
multi-model prediction was more accurate than the individual model
results.

A challenge existing in multi-model ensemble approaches is how to
weigh different models with consideration of individual model strength
and variations in the crop-growth environment. Several methods have
been developed to determine the weight value of each competing
model. The simplest method is the simple model average (SMA) ap-
proach, which is to assign an equivalent weight value for all models, so
the ensemble estimator is the mean of the model simulations. However,
the weights determined by SMA have no connection with the individual
model performance (Duan et al., 2007). For crop yield simulation over a
large geographic region, these weights are generally inadequate for
model ranking and selection and are unable to provide effective in-
formation to reveal the key limiting process or driving force of crop
production under spatial variability. The median estimate (ME) is si-
milar to SMA and uses the median for ensemble members as its pre-
diction (Martre et al., 2015). Another method is to allocate weights to
each competing model according to its fitness, and a consensus pre-
diction can be obtained through the linear combination of individual
model simulation with its corresponding weight (Thompson, 1977;
Smith et al., 2004). This approach focuses on capturing the uncertainty
associated with model structure, boundary conditions and physical
processes, and the multi-model ensemble average has convincingly
demonstrated improved prediction and reliability compared with in-
dividual model simulation. The algorithms for this approach include the
artificial neural network (ANN) estimate (Shamseldin and O'Connor,
1999) and the Bayesian model averaging (BMA) method (Madigan
et al., 1996; Raftery et al., 1997).

The BMA framework is especially good at assigning weights ac-
cording to individual model strengths. The model weights are obtained
based on Bayes’ theorem by updating the prior belief with the like-
lihood of model prediction given the observation (Raftery et al., 1997).
The posterior probabilities resulting from this rigorous statistical fra-
mework, as model weights, objectively demonstrate the difference in
the reproducing ability of each model relative to observed data
(Madigan et al., 1996; Hoeting et al., 1999). For crop growth simula-
tion, a particular individual model that captures the key limiting pro-
cess is more likely to fit the dynamics of a target variable and thus
exhibit a higher weight value. Moreover, BMA provides additional
uncertainty descriptions, including inner model variance and between-
model variance, and results in more accurate and reliable predictions

than many other multi-model methods (Raftery et al., 2005). The BMA
scheme has been applied in different applications including hydro-
logical modeling (Ajami et al., 2007; Duan et al., 2007), climate pro-
jection (Miao et al., 2014), ecology (van Oijen et al., 2013) and soil-
plant simulation (Wöhling et al., 2015). However, the application of
BMA for yield prediction has rarely been reported. Moreover, as model
ranking differs significantly due to the specific data set used in the
calibration, whether the weights are representative in terms of the
model predictive skills is the focus of research for BMA application
(Schöniger et al., 2015; Wöhling et al., 2015).

In this study, the application of BMA for maize yield prediction was
explored in Liaoning Province, China. The area of this province covers
approximately 148,000 km2, with considerable variability in climate. A
total of 2200,000 ha of maize was planted in 2013. Three different crop
models were applied to simulate maize growth and yield formation in
this province: the photosynthesis-oriented WOFOST model, the water-
oriented AquaCrop model and the nitrogen-oriented DNDC model. We
aim to investigate: (i) whether the BMA scheme can improve the ac-
curacy and reliability of yield prediction and (ii) whether the BMA
weights are representative enough in explaining the key limiting factor
for crop production as different models have different structures and
primary driving elements.

Section 2 introduces the methodology of the BMA framework.
Section 3 briefly describes the strategies for yield simulation of three
models, and Section 4 introduces the study region and data required for
the simulation. In Section 5, results from the three individual models
and the BMA approach are compared for validation. Finally, the dis-
cussion and conclusion are presented in Section 6.

2. Bayesian model averaging (BMA)

In the BMA approach as expressed in Eq. (1), yi presents the en-
semble member prediction of the specific variable of interest from the
ith model, and Y is the quantity of interest. For each ensemble member,
there is a conditional probability density function (PDF), pi(Y|yi),
which represents the conditional PDF of Y given that the ith model in the
ensemble is under consideration. Then, based on the law of total
probability, the conditional PDF of the BMA prediction on all model
ensemble members can be expressed as (Madigan et al., 1996; Raftery
et al., 1997):
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where n denotes the total number of competing models, and wi is the
posterior probability of the ith model prediction yi, which indicates the
likelihood of yi as the best forecast given the observed data. This weight
shows the relative contribution of the corresponding model to the
overall prediction, and we therefore obtain ∑ =w 1
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The conditional PDF of pi(Y|yi) of the ensemble members is as-
sumed to have a Gaussian distribution with a mean of aiyi+ bi and a
standard deviation σi (Raftery et al., 2005):
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where ai and bi are the parameters of the linear bias-correction of the
linear regression of Y on yi. The posterior BMA ensemble mean and
variance can be expressed as (Raftery et al., 2005):
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Consequently, the BMA ensemble mean is the linear combination of
the individual ensemble predictions and their weights. BMA ensembles
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