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a  b  s  t  r  a  c  t

Phenotype  by genotype  prediction  based  on  ecophysiological  models,  which  account  for  allelic  gene,
QTL,  or  marker  effects,  have  many  possible  applications  in  plant  breeding  programs.  The  goal  of  the
present  study  was  to predict  heading  date  of individual  lines  of  a Hordeum  vulgare  x  H. vulgare  ssp.  spon-
taneum  BC2DH-population  using  a phenology  model  parameterized  with  marker  effects  derived  from
ridge  regression  best  linear  unbiased  prediction.  The  genetic  linkage  map  included  SSR  markers  and
flowering-time  genes.  Effects  of  photoperiod  and  temperature  on heading  date  were  measured  under
controlled  conditions  on a subset  of  the  population  comprising  the recurrent  parent  and  36  BC2DH can-
didate  introgression  lines  covering  the  H. spontaneum  genome.  Marker  effects,  which  were  subsequently
used  for  model  parameterization,  were  estimated.  Model  evaluation  was carried  out  on  already  pub-
lished  field  trial data  comprising  the  36  BC2DH  lines  and  266  independent  BC2DH  lines  from  the  same
cross.  Applying  the  model  on  the  lines  used  for model  parameterization  explained  33–51%  of heading-
date  variation  in  three  of  the four evaluation  environments  but  only  20%  of  the  variation  in  the fourth
environment.  Heading  dates  of  the  266  independent  lines  were predicted  with  less  accuracy.  Between
20  and  25%  of phenotypic  variation  was  explained  by  the  model  in three  environments  and  only  8%
of  heading  date  variation  in  the fourth  environment.  The  root mean  squared  error  (RMSE)  was  slightly
higher  for  independent  lines  than  for the  lines  used  for model  parameterization.  Dissecting  RMSE  into  its
components  revealed  that RMSE was  largely  influenced  by  a systematic  bias  in most  environments  and
by  the  missing  ability  of the  model  to describe  the  observed  variation  within  the  set  of  genotypes  in all
environments.  Comparing  the  combined  genome-wide  prediction  (GWP)  and  phenology  model  with a
conventional  GWP  model  gave  similar  prediction  accuracies  if  the training  set  had  the  same  size.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

As a possibility to accelerate breeding efforts, the combination
of ecophysiological or phenological modeling and QTL analysis has
been suggested (Yin et al., 2014; Chapman, 2008; Hammer et al.,
2010). For the prediction of environmental effects on plants with
different allele combinations of relevant genes and for a better
identification of genetic factors, which underlie complex traits and
are influenced by environmental factors, modeling helps to dis-
sect these traits into underlying physiological processes (Tardieu,
2003). Thus, combining QTL and crop modeling could be used for
defining ideotypes, in-silico testing of possible allelic QTL or gene
combinations (Cooper et al., 2002) and for an efficient selection of
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candidate genes (Boote et al., 2001; Slafer, 2003). Ma  et al. (2002)
found that QTL mapping approaches using repeated measurements
on growth curves provide maximum information about QTL effects
and positions and are advantageous if small populations are sam-
pled or medium dense genetic maps are used. Crop models and
QTL analysis were combined, e.g., for describing leaf elongation rate
in maize (Reymond et al., 2003) and fruit quality in peach (Quilot
et al., 2005). Phenological models were used to model tempera-
ture effects in Brassica oleracea (Uptmoor et al., 2008; Uptmoor
et al., 2012), to identify QTL for flowering time in response to pho-
toperiod and temperature in rice (Nakagawa et al., 2005), and to
detect flowering time QTL in response to photoperiod in barley,
which were subsequently used for model parameterization (Yin
et al., 2005a,b). The impact of QTL controlling leaf and silk elon-
gation on crop growth, water use and grain yield was simulated
by Chenu et al. (2009). A neural network model with underlying
genetic information was  developed for simulating flowering time
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in Arabidopsis thaliana (Welch et al., 2003), and a genetically param-
eterized photo-thermal model was used to predict bolting of A.
thaliana genotypes in natural environments (Wilczek et al., 2009,
2010).

A major problem of classical QTL studies carried out on the pro-
genies of bi-parental crosses is that they ignore small-effect loci,
which limits QTL based marker-assisted selection (MAS) strategies.
The importance of small effect QTL for accuracies in predicting phe-
notypes by genotypes is due to the polygenic nature of quantitative
traits, in which many genes contribute to the trait but the contribu-
tive effect of each single gene is small. GWP  models estimate marker
effects of the whole genome and, thus, include also small effect QTL
(Desta and Ortiz, 2014). GWP  was introduced by Meuwissen et al.
(2001); first used in animal breeding (Hayes et al., 2009) and later
adopted in plant breeding (Lorenz et al., 2011). The integration of
crop modeling and GWP  has already been discussed (Heslot et al.,
2014; Technow et al., 2015).

The present study aims at combining a GWP  and a phenology
model in order to simulate heading date of any possible progeny
of a barley BC2DH population. Specific objectives were (1) to esti-
mate the effects of daylength and temperature on heading date of
the recurrent parent and 36 BC2DH lines of the H. vulgare ‘Scar-
lett’ x H. vulgare spp. spontaneum ‘ISR42-8’ cross (von Korff et al.,
2004), (2) to parameterize a heading date model with genome-
wide marker effects, and (3) to compare the combined GWP  and
phenology model with results of a conventional field-data based
GWP  model. We  hypothesized that heading date can be predicted
by the genotype in any environment if estimated marker effects
linked to genetic loci, which control development towards head-
ing in response to photoperiod and temperature, are known. GWP
models are useful to analyze introgression lines (ILs) or backcross
lines carrying more than one donor segment since these statistical
models do not suffer from overparameterization if the number of
markers is larger than the number of individuals, and effects can
be assigned to individual donor segments even if ILs carry mul-
tiple donor alleles (Hofheinz and Frisch, 2014; Falke et al., 2014).
The number of estimates of allelic marker effects may  exceed the
number of genotypes since all markers have an effect sampled from
the same normal distribution, variances are the same for all effects,
and, thus, only one variance is estimated (Meuwissen et al., 2001;
Hayes et al., 2009). Ridge regression best linear unbiased predic-
tion (rrBLUP) is the most widely used GWP  model, if analysis is
restricted to a biparental population (Jannink et al., 2010).

2. Materials and methods

2.1. Plant material and genotype information

We  used the malting-barley cultivar ‘Scarlett’ and 36 H. vulgare
cv. ‘Scarlett’ x H. vulgare ssp. spontaneum ‘ISR42-8′ BC2DH lines with
‘ISR42-8′ as donor for model parameterization and field heading-
date data of 302 BC2DH lines of the cross comprising the 36 lines for
model parameterization (training set) and 266 independent lines
for model evaluation (validation set). The 36 lines were selected
from the BC2DH population according to genome coverage. The
whole population was mapped with 97 SSR markers (von Korff
et al., 2004). The main flowering time regulators PpdH1, VrnH1,
VrnH2, VrnH3, HvCO1, HvCO2, HvGI, HvFT2, HvFT3,  and HvFT4 were

integrated into the SSR map  (Wang et al., 2010).

2.2. Experiments

Three experiments were conducted in order to define model
parameters for photoperiod and temperature responses. For the
characterization of temperature effects, 36 BC2DH lines and the
recurrent parent were sown in rows in polyvinyl boxes with four
temperature treatments, two  replications, and seven plants per
replication. Boxes were kept in climate chambers at 15 ◦C for the
first ten days after sowing. Temperatures of one treatment were
then changed to 10 ◦C and those of two  other treatments to 20 ◦C.
Plants were then grown at constant day/night temperatures of 10,
15, 20, and 25 ◦C. Temperature of the latter treatment was increased
from 20 to 25 ◦C 13 days after sowing. Plants were cultivated under
long day (LD) conditions (16 h) with 14 h full light plus 1 h twi-
light in the morning and evening. Since barley genotypes may
flower before heading, BBCH stage 51 (Lancashire et al., 1991) was
recorded daily and defined as time to heading. The tip of the ear
becomes visible at the top of the shoot or from the side of the leaf
sheath at BBCH 51.

Genotypic variation in response to photoperiod was  evaluated
in two  reciprocal transfer experiments. The LD variable was  real-
ized by a daylength of 15 h including 1 h twilight in the morning
and evening, the short day (SD) variable by a daylength of 10 h full
light. The first reciprocal transfer experiment included all 36 BC2DH
lines and the recurrent parent. Plants were grown under LD and
SD conditions in two  replications and with two plants per replica-
tion. Transfers from LD to SD and vice versa were carried out in 14
d intervals. The second reciprocal transfer experiment comprised
only the recurrent parent and BC2DH lines carrying introgressions
on the flowering time genes PpdH1 and VrnH1.  All other BC2DH
lines of the training set showed no significant difference from ‘Scar-
lett’ in the first reciprocal transfer experiment (data not shown).
Plants were cultivated in growth chambers with two replications
and seven plants per replication at a constant temperature of 22 ◦C.
Seeds were sown in polyvinyl boxes. Initially, half of the plants of
each DH-line were placed in climate chambers with LD or SD con-
ditions, respectively. Starting nine days after sowing, one set of ILs
was transferred from SD to LD and from LD to SD in seven-day inter-
vals until 80 days after emergence. Once a plant was  transferred, it
was grown in the new environment until heading. One  treatment
grew from sowing to heading continuously in LD or SD, respectively.

2.3. Model framework

A multiplicative model was used for simulating time to heading.
Daily development rates (�i) were calculated as follows:

ωi = f (T)/fo if � ≤ �1 or � ≥ �2

ωi = f (T) × f (P)/fo if �1 < � < �2

(1)

where f (T) is the temperature response function, f(P) is the pho-
toperiod response function, fo is the minimum number of days from
sowing to heading, � is the actual photoperiod, �1 is the start of the
photoperiod sensitive phase and �2 is the end of the photoperiod
sensitive phase (Yin et al., 2005a).

The temperature response function was computed by using car-
dinal temperatures (Wang and Engel, 1998):

f (T) = (2 (T − Tmin)a (Topt − Tmin)a − (T − Tmin)2a) / (Topt − Tmin)2a

if Tmin ≤ T ≥ Tmax

f (T) = 0 if T < Tmin or T > Tmax,

(2)

where T is the actual daily mean temperature, Topt is the temper-
ature optimum for maximum development rates under optimum
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