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A B S T R A C T

The majority of experimental data are obtained by destructive measuring techniques. Inevitably, in all these data
variation is present, sometimes small and negligible, sometimes large, preventing proper analysis and extraction
of meaningful information by traditional statistical techniques altogether. In this paper, three systems are pre-
sented to analyse destructive (cross-sectional) data, including biological as well as technical variation. The first
system involves ranking the data per measuring point in time which provides a pseudo fruit number that can be
used in non-linear indexed regression analysis similar as for non-destructive (longitudinal) data. The rationale
behind this is that the individual with the highest value at some point in time will resemble the most another
individual with the highest value at previous or future times, and the second highest the second highest at
previous times, and so on. The second system also relies on this ranking number, but is now converted into a
probability, which is used in non-linear regression analysis with quantile functions. The third system is based on
optimising the log likelihood of the density function derived from the applied model (i.e., the expected dis-
tribution) over the measured data. Simulated data are used to elucidate the power of the three systems. A dataset
on mango colour is used to validate the systems on a real-world data set. Although all three systems perform
satisfactorily with percentages variability accounted for (R2

adj) well over 90%, a clear preference cannot be given
since the choice of the proper analysis system depends on the experimental conditions (number of data, in-
dividuals and sampling points in time). Non-linear indexed and non-linear regression with quantile functions
delivered the most reliable estimates. The three systems open up the possibility to analyse and reanalyse de-
structively measured data providing a sufficient large number of individuals and a clear indication of the kinetic
model is available.

1. Introduction

Variation in experimental data is always present, either biological or
technical variation, or both. The presence of variation invariably cre-
ates difficulties in data interpretation. Sometimes the difficulties are
latent and not well recognised, sometimes they are huge, and prevent
extracting useful information altogether. Technical variation is the re-
sult of systematic errors, random errors and blunders, while biological
variation originates from the properties of the measured produce that
are different due to differences in stage of development. Classical sta-
tistical analysis applies robust statistical procedures developed over
more than hundred years, but does not aim at a thorough mechanistic
interpretation of the variation present. Standard statistical procedures
that deal with variation assume that the observed variation is normally
distributed, and if not, choose from a range of transformations to obtain
normality. There is, however, substantial information to be gained by a

proper analysis of the variation. In the last two decades, several reports
have been published to address the biological variation in longitudinal
data, i.e., data obtained by non-destructive measuring techniques, re-
peatedly measuring the same individual items over time, applying
models based on confirmed or plausible reaction mechanisms and the
rules of chemical kinetics (Hertog, 2002; Schouten et al., 2004, 2007;
Tijskens and Wilkinson, 1996; Tijskens et al., 2007, 2008, 2009b,
2015b, 2016; Unuk et al., 2012). The importance of dealing with bio-
logical variation has been indicated (Hertog et al., 2004; Tijskens et al.,
2003) and reviewed (Hertog et al., 2007; Jordan and Loeffen, 2013).
Part of the statistical background has been reported (De Ketelaere et al.,
2006; Tijskens et al., 1999, 2015b), all dealing with longitudinal data.
All these studies on longitudinal data have proven that biological var-
iation is not the result of random processes, but of distinct interactions
between the underlying kinetic processes and therefore subject to de-
terministic rules. Unravelling these deterministic rules is the true task of
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modellers and data analysts.
The majority of experimental data, however, do not consist of

longitudinal, but of cross-sectional data, i.e. obtained by destructive
measuring methods using new samples from a large population at every
measuring point in time. The deterministic rules of the behaviour of
biological variation derived from analysing longitudinal data, should
however, also apply to cross-sectional data: the way samples are taken
does neither affect the processes involved, nor the resulting effects. In
this paper, three methods for analysing cross-sectional data, taking
biological and technical variation into account, are presented and
compared. The first two systems rely on ranking measured data at each
measuring time. The first system uses this ranking number as a pseudo
fruit number, mimicking longitudinal data in indexed non-linear re-
gression. The second system uses non-linear regression with quantile
functions (Jordan and Loeffen, 2013) based on a probability derived
from the ranking number. In the remainder of this paper this system
will be called QF regression. The third method directly fits the dis-
tribution of measured data on the expected distribution for these
measured data based on the assumed, plausible or proven model
structure, optimising the log-likelihood (Schouten et al., 2010). This
method follows the dynamics of the distributions rather than of in-
dividuals. Finally, the three systems are applied on simulated and ex-
perimental data. The results are compared to a standard non-linear
regression analysis, which does not consider biological variation at all.
The implications of the new cross sectional analysis techniques are
discussed.

2. Material and methods

The methods will be demonstrated using simulated data applying
models frequently encountered in horticulture: exponential behaviour
(decay to a lower asymptote and production towards an upper
asymptote) and logistic behaviour. The simulations mimic destructive
measuring techniques: at every sampling point in time, new samples are
taken at random based on the assumption that the biological shift factor
(Δt, which expresses the state of development in the time dimension
(Tijskens et al., 2005)) is distributed according to a normal distribution.
This assumption has been found to be valid in all cited references using
longitudinal data.

2.1. Model development

2.1.1. Exponential behaviour
Exponential behaviour, both decay as well as production, is fre-

quently encountered in experimental data, e.g., firmness (Schouten
et al., 2007, 2010; Tijskens et al., 2009a). Exponential behaviour is the
result of a first order reaction (Eq. (1)).

→S P
k (1)

where S is the substrate, P the product and k the reaction rate constant.
At constant external conditions (mainly temperature) and assuming an
asymptotic value in substrate (Smin), indicating that part of S that is not
accessible for breakdown, the analytical solution is shown in Eq. (2).
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where t represents time. The subscript 0 refers to the initial state and
min to the lower asymptote. P0 expresses the amount of product present
at the start of the experiment. The asymptotic value for P at +infinite
time is S0 − Smin + P0. That signifies that the asymptotic value of the
product depends on the initial amount of substrate present (S0). So, the
more initial substrate, the higher the asymptote will be. This behaviour
is frequently encountered in horticultural data sets (Tijskens et al.,
2015a, 2016).

The model, based on exponential production (P(t) in Eq. (2)) was

first proposed by von Bertalanffy to describe length increase as part of
his General Systems Theory (von Bertalanffy, 1938) and further de-
veloped and promoted by Kooijman (1986, 1988), not only for growth
in size and weight in plant material but especially for animal growth.
Schouten et al. (2002) applied a similar model for the elongation of
chrysanthemum internode length.

Assuming variation exists in the initial amount of substrate (S0)
these equations can be converted into the biological shift factor nota-
tion using Δt, the biological shift factor (Tijskens et al., 2005). Adding a
random error (ε), indicating the technical or measuring error, one ar-
rives at Eq. (3).
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with Δt the biological shift factor, a stochastic variable expressing the
stage of development of individual fruit ≈( (μ , σ ))Δt ΔtN and ε a sto-
chastic variable ≈( (0, σ ))εN expressing the technical variation or
measuring error. Sref is an arbitrarily chosen value (preferably around
the midpoint of the overall range of change in substrate S), used as a
reference value for the biological shift factor.

2.1.2. Logistic behaviour
Sigmoidal behaviour is often described by a logistic function. This

equation can be derived (Schouten et al., 2007) from a massive sim-
plification of an autocatalytic reaction mechanism (Eq. (4)).

+ → ⋅ +S E E P2
k (4)

where S and P are the substrate and the product respectively, k the
reaction rate constant while E represents the catalyst (e.g., an enzyme)
in the autocatalytic reaction mechanism. From this mechanism, the
differential equations can be deduced by applying the rules of chemical
kinetics and solved at constant external conditions, yielding the logistic
equation. Expressing the equation in the biological shift factor notation,
assuming an asymptotic value in substrate (Smin) and adding a random
error (ε) yields Eq. (5).
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where the subscript max refers to the upper asymptote and min to the
lower asymptote. Δt is the biological shift factor, a stochastic variable
expressing the stage of development of individual fruit. The reference
point for the biological shift factor is taken at the midpoint of the sig-
moidal curve.

2.2. Probelation: ranking data

Longitudinal data analysis exploits the major resemblance between
repeated measurements on individual units over time. For cross-sec-
tional data, this method cannot be applied since the sample is destroyed
at every measuring point in time, and new samples have to be used. So,
the same individual cannot be used anymore for future measurements.
However, continuing on this line of reasoning on time related simila-
rities, one could postulate that in a set of cross-sectional data the in-
dividual with the highest value at some point in time will resemble the
most another individual with the highest value at previous or future
times, and the second highest the second highest at previous times, and
so on until the lowest value. One could assign an identification number
based on the sorted order of the measured values per measuring point in
time (a process called probelation: PROBing variance for PROBabilty).

Purely based on statistical reasoning, Gilchrist (1997, 2000, 2008)
applied the same technology, tracing back the idea of ranking ob-
servations to Galton (1883). These authors call ordered numbers ‘ran-
kits’, and connect that order number to a probability, used in QF re-
gression (see below). So, not only from a physiological point of view,
but also from a statistical point of view this type of ranking of measured
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