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A B S T R A C T

As consumers buy with their eyes, colour is considered one of the most important quality parameters of
food products. Traditionally, this is defined by human inspection, or measured using a colorimeter or a
spectrophotometer. As the first is subjective and prone to factors like fatigue, this is not ideal for
industrial use. The second only measures a small area of the food product, making it difficult to get a clear
overview of the colour of the whole sample. To overcome these limitations, hyperspectral imaging has
been used in this research to measure the postharvest colour of vine tomatoes. Two methods to calculate
the colour based on hyperspectral images are compared. The first is the use of a direct method to calculate
the colour from the spectra in terms of CIELab-values, while the second method is a soft modelling
approach involving multivariate statistics. The soft modelling method was found to achieve the best
results (R2

L* = 0.86; R2
a* = 0.93; R2

b* = 0.42, R2
Hue = 0.95, R2

Chroma = 0.51), but its applicability is limited to
the range of products on which the models have been trained. The direct method is more generally
applicable, but was found to lack robustness against intensity variations due to the curvature and
glossiness of the tomatoes.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Tomato colour is determined by the concentration of chloro-
phyll and carotenoids in the tomato tissue. In the earliest stages of
the development of the tomato, chlorophyll is the dominant
pigment, resulting in a green colour. During ripening of tomatoes,
the chlorophyll degrades, while carotenoids are synthesized (Arias
et al., 2000). The two main carotenoids in tomatoes are b-carotene
and lycopene (c,c-carotene), which have both been associated
with several health benefits (Arias et al., 2000). b-carotene gives
an orange colour, while lycopene gives a red colour. As the
concentration of lycopene in ripe tomatoes is much higher than the
concentration of b-carotene, this results in a red colour (Saltveit,
2005). As a consequence of this evolution in the pigments during
ripening, the colour of tomatoes is considered the most important
external factor to describe ripeness and postharvest life (López
Camelo and Gómez, 2004). Therefore, it is used for marketing
purposes and as a quality parameter for the industry (Arias et al.,
2000).

Traditionally, the colour of tomatoes is determined through
human inspection. In this case, tomatoes are divided in several

different colour classes, based on predefined colour charts. The
USDA standard classifies the maturity of tomatoes into six stages
based on the colour that is the most dominant (Green, Breakers,
Turning, Pink, Light Red and Red) (USDA, 1991). In Europe, a
different colour chart is used, which defines 12 ripeness stages
(OECD, 2002). The advantage is that human inspection is relatively
robust against changes in illumination, but the perception of
colour is subjective, tedious and prone to human error (Wu and
Sun, 2013).

To describe colour in a deterministic way, many different colour
spaces have been proposed. The goal of a colour space is to describe
the observed colour numerically in an unambiguous way. The most
well-known colour space is the RGB-space, which defines the
colours based on their coordinates in a three-dimensional space
spanned by the red, green and blue axes. As these axes correspond
to the stimuli centres in the human eye, this colour space is
commonly used in digital imaging. However, this space is device-
dependent, such that different devices measure different values for
the same instance. Therefore, the sRGB space has been proposed to
standardize these values (Cubero et al., 2011). However, this colour
space is not perceptual uniform, meaning that the Euclidean
distance between two colours is not the same as the colour
difference perceived by the human eye (Cubero et al., 2011; Wu and
Sun, 2013). In 1931, the Commission Internationale de l’Eclairage
(CIE, International Illumination Commission) developed a colour* Corresponding author.
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space that is closer related to the way the human eye detects
colour, namely Yxy. Using standard observer colour matching
filters, the tristimulus values X (red), Y (green) and Z (blue) and
their normalized values in x, y and z could be calculated. As the
sum of the latter three values is one, 2 of these values are sufficient
to represent the Chromaticity. Y is then used as a measure of the
brightness, as the green sensitivity of the eye corresponds best
with the sensitivity to lightness (Schanda, 2007). As the relation
between this colour space and human colour perception was still
not linear, a non-linear transformation of this colour space known
as CIE 1976 (L*a*b*) has been proposed. This colour space consists
of 3 axes, L*, a* and b*. L* describes the luminance of the measured
surface (between 0 and +100), while a* goes from �128 (green) to
+127 (red) and b* goes from �128 (blue) to +127 (yellow) (Schanda,
2007). As many fruits evolve from green to red during ripening the
a* parameter can be very interesting as an indicator for the
ripeness stage. However, when the evolution from green to red
goes through yellow, the evolution of the b* parameter should also
be monitored. In this case, the Hue angle can be more informative.
The Hue angle, together with Chroma and L* is a representation of
the L*a*b* colour space in polar coordinates instead of Cartesian
coordinates (Schanda, 2007).

Traditionally, colorimeters or spectrophotometers are used to
measure the colour of food in a laboratory environment. Color-
imeters obtain the tristimulus values (X, Y and Z) optically, by
combining different optical filters. Spectrophotometers measure
the reflectance spectra of the sample. The colour is then calculated
based on the obtained spectra, taking into account the illumina-
tion, the measurement geometry and the observer angle (Pathare
et al., 2013).

Clément et al. (2008) achieved very accurate colour predictions
using Vis/NIR Spectroscopy in combination with Partial Least
Squares Regression (PLS-R) (Hunter a: R2= 0.98, Hunter L and
Hunter b: R2= 0.92). These methods are fast and simple, but have
two important drawbacks. First, these instruments can only
measure a small and relatively uniform surface of a sample, which
can be problematic for inhomogeneous products such as fruit and
vegetables. Secondly, the size and geometry of the sample are of
uttermost importance. If the sample window is not completely
covered by the product, the colour measurement could become
inaccurate. Due to these drawbacks, these point measurement
techniques are not suitable for accurate characterization of the
colour distribution on a complete fruit or vegetable (Wu and Sun,
2013).

To overcome these drawbacks and to be able to automate colour
measurements of food products, many researchers have investi-
gated the potential of machine vision techniques to measure the
colour for every pixel of the food product in the image (Wu and
Sun, 2013). To classify tomatoes in the 6 different ripeness classes

defined by the USDA, Choi et al. (1995) used image analysis. They
converted RGB values into HIS (Hue, saturation, intensity) values
and were able to classify 77% of the tomatoes in the correct
ripeness-class based on the Hue distribution over the complete
fruit. León et al. (2006) investigated different regression methods
to obtain accurate L*, a* and b* predictions from RGB images. On
standards, they achieved an average normalized error (e) (Eq. (43))
of 0.93%, while for chips, they obtained an e of 1.8%. Sharifzadeh
et al. (2014) reported that a colour difference (DE) (Eq. (37))
smaller than 1 unit distance in the CIELab colour space is not
detectable for the human eye, while a DE between 3 and 6 units
distance is still acceptable for industrial use. Larraín et al. (2008)
used digital images to measure the colour of beef meat. By applying
linear or quadratic regression to the digital images, a good R2 could
be achieved for a*, Chroma and Hue (�0.93), but for b* and L* these
results were less accurate (R2< 0.6). Mendoza and Aguilera (2004)
achieved good results for the measurement of the colour of
bananas with an R2 of 0.804 for the prediction of L*, 0.972 for the
prediction of a* and 0.609 for the prediction of b*. The colour of
Atlantic salmon measured with a Minolta colorimeter and a colour
vision system was compared by Yagiz et al. (2009). They remarked
that the colour readings by the computer vision system were
significantly higher than the colour readings by the colorimeter,
pointing out that the results of colorimeter and computer vision
measurements should be compared with care.

Next to the use of RGB vision systems, also multi- and
hyperspectral images have been evaluated to calculate the colour
of food products. Hyperspectral imaging can be seen as a
combination of digital imaging with spectroscopy, which provides
a reflection spectrum for each pixel in the image. As these systems
acquire more detailed spectral information than RGB cameras, it is
expected that more accurate colour measurements could be made
with these. This was confirmed by Polder et al. (2002), who
classified tomatoes according to 5 ripeness stages using RGB
imaging as well as a combination of hyperspectral imaging with
Linear Discriminant Analysis (LDA). Based on RGB imaging, 51% of
the pixels were misclassified, while the use of the hyperspectral
imaging system reduced the misclassification rate to 19% at pixel
level. On object level, all 25 tomatoes were accurately classified
using hyperspectral imaging compared to 24 correctly classified
tomatoes based on RGB-imaging. Hahn (2002) developed a
multispectral imaging system to detect tomatoes that will never
ripen during storage with an accuracy over 85%.

Fig. 1. Hyperspectral setup with indication of the main components.

Fig. 2. Tomato vine of the cultivar Merlice with the marked circles at the bottom of
the tomatoes where the calibrated spectrophotometer measurements were
performed.
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