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a b s t r a c t 

For agent-based modeling, the major challenges in deriving agents’ behavioral rules arise from agents’ 

bounded rationality and data scarcity. This study proposes a “gray box” approach to address the challenge 

by incorporating expert domain knowledge (i.e., human intelligence) with machine learning techniques 

(i.e., machine intelligence). Specifically, we propose using directed information graph (DIG), boosted re- 

gression trees (BRT), and domain knowledge to infer causal factors and identify behavioral rules from 

data. A case study is conducted to investigate farmers’ pumping behavior in the Midwest, U.S.A. Re- 

sults show that four factors identified by the DIG algorithm- corn price, underlying groundwater level, 

monthly mean temperature and precipitation- have main causal influences on agents’ decisions on 

monthly groundwater irrigation depth. The agent-based model is then developed based on the behavioral 

rules represented by three DIGs and modeled by BRTs, and coupled with a physically-based groundwater 

model to investigate the impacts of agents’ pumping behavior on the underlying groundwater system in 

the context of coupled human and environmental systems. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the new era of water resources management, a good un- 

derstanding of physical systems alone cannot guarantee the effec- 

tiveness of the policies that are drawn upon. Policy makers need 

to understand stakeholders’ behavior to make appropriate policies 

that can mitigate water conflicts and promote the sustainable use 

of water resources. As a result, modeling stakeholders’ behavior, 

in particular their interactions with their biophysical systems, has 

never been so important in the history of water resource manage- 

ment. Over the last decade, agents have gained in importance for 

the modeling of human behaviors, and agent-based models (ABMs) 

have been used to study the dynamics of complex systems con- 

sisting of distributed agents, gaining its popularity in both social 

science and economics ( Arthur, 1999; Bonabeau, 2002; Tesfatsion, 

2006 ). 

The design of an agent-based model follows a bottom-up, dis- 

tributed approach. It starts from the definition of the attributes 

and behaviors of individual agents, and their interactions with the 

surrounding environments ( Ng et al., 2011; Hu et al., 2015a ). Em- 

ploying ABMs allows modelers to focus on the attributes and be- 
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haviors of individuals which otherwise may not be possible us- 

ing other modeling methodologies ( Crooks and Heppenstall, 2012; 

Urban and Schmidt, 2001 ). Modelers can test a variety of theoret- 

ical assumptions and concepts about human behavior within the 

safe environment of a computer simulation ( Stanilov, 2012 ). Thus, 

for coupled human and environmental systems, ABMs outweigh 

conventional simulation models, built based on the top-down cen- 

tralized approach, in studying the system dynamics. ABMs are 

more likely to capture emergent phenomena arising from the in- 

teractions between human and environmental systems. 

Modeling human behavior is complex. Human behavior is not 

random but based on our diverse knowledge and abilities, and 

modeling such behavior would not be particularly challenging if it 

were always rational ( Kennedy, 2012 ). The rationality of human be- 

havior is affected by emotional, intuitive, or unconscious decision- 

making processes. These processes can distort agents’ percep- 

tions of the environment and the likelihood of future evaluations 

( Loewenstein and Lerner, 2003 ). Furthermore, limited information, 

varying cognitive abilities and insufficient time all contribute to 

limit the rationality of human decision making ( Simon, 1996 ). Re- 

gardless of its origin, agents’ bounded rationality makes it difficult, 

if not impossible, to derive “perfect” rules for an ABM. 

For coupled human-environment systems, the behavioral rules 

of agents are usually the result of combining effects of envi- 

ronmental, socio-economic, and institutional factors. For example, 
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rule-based ABMs usually assume the availability of explicit be- 

havior rules from domain knowledge and empirical observations. 

Commonly used representations of expert knowledge consist of 

two basic forms, declarative knowledge of facts and procedural 

knowledge, and the latter is typically represented in IF-THEN rules 

( Newell, 1972; Anderson, 2007 ). Other ABM studies assume that 

all agents are rational and follow the general utility optimization 

principles (e.g., Yang et al., 2009; Ng et al., 2011 ). However, nei- 

ther the rule-based approach nor the optimization-based approach 

is sufficient to capture the behavioral uncertainty arising from the 

bounded rationality of agents’ decision-making processes. Models 

developed under these approaches usually do not fully reflect ob- 

served facts and phenomena, which can raise concerns when val- 

idating modeling of agents’ behaviors within ABM ( Elsawah et al., 

2015 ). 

However, it would be prohibitive to pinpoint the origin of 

agents’ bounded rationality case by case and simulate them ex- 

plicitly. Instead, this paper proposes an alternative approach, which 

presents a “gray box” to simulate agents’ behaviors under the in- 

fluence of bounded rationality. We will later discuss how to iden- 

tify the major factors relevant to the decision variables, and ob- 

tain the gray box (i.e. agents’ behavioral rules) from the data sets 

of these factors that hold memories of agents’ behavior with the 

data-driven approach. The gray box can then be fed by the data of 

the decision variable and its major factors to predict agents’ deci- 

sions given these factors. 

This paper is organized with the goal of deriving agents’ behav- 

ioral rules under the impact of bounded rationality using a com- 

bined data-driven approach and domain expertise. In the next sec- 

tion, we first present general concepts and models necessary to in- 

troduce our methodology. Following that, we propose a method- 

ological framework to derive agents’ behavioral rules, use a case 

study to demonstrate the proposed framework, and present results. 

Finally, we conclude with our findings on the methodology and re- 

sults. 

2. Background: concepts and models 

Agents’ behavior reflects their cognitive processes of decision- 

making. They may be modeled either by how decisions should be 

ideally made (i.e., optimization-based) or by describing how they 

are actually made (i.e., rule-based) ( Elsawah et al., 2015 ). Both the 

optimization-based and rule-based approaches require modelers 

to have a thorough understanding of the underlying mechanism 

that drives agents’ decision-making and then model the mecha- 

nism with behavioral parameters. However, these two approaches 

are designed to describe agents’ behavioral rules without account- 

ing for behavioral uncertainty arising from agents’ bounded ratio- 

nality. Separate techniques are usually needed for the quantifica- 

tion of the impacts of agents’ behavioral uncertainty, such as global 

sensitivity analysis ( Hu et al., 2015b ). A holistic method from the 

data-driven approach perspective (e.g., statistical modeling) can be 

used to derive behavioral rules using both the available data and 

the expert knowledge to accommodate behavioral uncertainty. 

Some limitations are noticed regarding the application of data- 

driven approaches to derive agents’ behavioral rules. The first is 

with data availability. Although significant progress has been made 

in recent years to gather data for the definition of agents and the 

representation of their behavioral rules ( Janssen and Ostrom, 2006; 

Robinson et al., 2007; Smajgl et al., 2011 ), ways to measure hu- 

man behaviors directly, unlike measuring physical quantities, are 

limited. Some aspects, for instance emotion and social behaviors, 

are very difficult to measure, if not unmeasurable. Conventionally, 

researchers use social surveys such as interviews to gather hu- 

man behavioral data indirectly. Lack of sufficient data, in partic- 

ular good quality behavioral data, makes derivation, validation and 

verification of agents’ behavioral rules difficult for ABM develop- 

ment ( Kennedy, 2012 ). Furthermore, the relationships derived by a 

data-driven approach can be spurious due to the neglect of a con- 

founding variable, which is an extraneous variable that correlates 

with other variables in a statistical model. For example, consider- 

ing the DNA of two non-twin brothers, their DNA would be highly 

correlated, even when the DNA of non-relatives is known. How- 

ever, once the DNA of the parents is known, then conditioned on 

the parents’ DNA, the DNA of the brothers would be statistically in- 

dependent. Thus, the DNA of the parents would be a confounding 

variable in that case. If it is not known, then a spurious causal re- 

lationship between the brothers could have been inferred. To rule 

out spurious relationships, this study incorporates expert domain 

knowledge. 

In the following section, we will firstly introduce basic concepts 

and applications of a particular type of statistical models, namely 

probabilistic graphical models (PGMs). Then, we will delve into a 

specific PGM, directed information graph (DIG), and explain how 

it can be used to derive the causal relationships between agents’ 

decisions and the factors. Based on the DIGs for different agents, a 

machine learning technique called boosted regression trees (BRT) is 

applied to converting the DIGs to the behavioral rules for different 

agents. 

2.1. Probabilistic graphical models 

Probabilistic graphical models (PGMs) emerge as an innovative 

approach to organically connect different parts used to build up 

the complex system while ensuring the consistency of the system. 

PGMs are considered as the marriage between probability theory 

and graph theory. The probability theory side provides ways to 

interface models to data and the graph theory side enables hu- 

mans to vividly model highly interacting sets of variables ( Jordan, 

1998; Koller and Friedman, 2009 ). PGMs are the representations 

of the probabilistic relationships between variables in a complex 

system ( Buntine, 1996 ). In recent decades, there has been a large 

body of work on PGMs, including but not limited to, Markov net- 

works, Bayesian networks, and factor graphs ( Pearl, 1988; Koller 

and Friedman, 2009 ). 

PGMs are widely used in various fields including, but not lim- 

ited to, medical diagnosis, navigation, image processing and com- 

munication. Recently, a few case studies have been conducted in 

land and watershed management in the context of adaptive natural 

resource management using PGMs ( Alexandridis, 2006; Carmona 

et al., 2011 ). For example, Aalders (2008) tries to incorporate the 

characteristics of land managers with Belief Networks (BNs) to ex- 

plore the impacts of their behaviors in decision-making processes. 

However, they usually obtain the structure of the graphical models 

purely based on the domain expertise. 

One major research thrust in the PGM literature is inferring 

the network topology – who is influencing or interacting with 

whom. For example, given the joint distribution and a specified 

variable ordering, the structure of Bayesian networks (i.e. directed 

and acyclic graph) can be found using Markov blanket proper- 

ties ( Pearl, 1988 ). However, if the variable ordering is not known, 

learning and optimally approximating the structure becomes NP- 

hard ( Chickering et al., 1994 ). In addition, some researches are fo- 

cused on identifying causal relationships using Bayesian networks 

( Koller and Friedman, 2009 , Ch. 21), which requires the use of ex- 

pert domain knowledge to label the variables. Thus, the resulting 

Bayesian network depends on the variable labeling; without ex- 

pert labeling the Bayesian network is not unique and the identi- 

fied relationships are only correlative. For the setting of time-series 

variables, dynamic Bayesian networks can be applied to finding 

a Bayesian network to characterize their relationships over time. 

Each variable corresponds to multiple nodes in the graph, one for 
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