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A B S T R A C T

Accurate forecast of landfill gas (LFG) transport has remained as an active research area, due to the safety and
environmental concerns, as well as the green energy potential. The iterative ensemble Kalman filter (IEnKF) has
been used to characterize the heterogeneous permeability field of landfills. As a Monte Carlo-based method,
IEnKF requires a sufficiently large ensemble size to guarantee its accuracy, which may result in a huge com-
putational cost, especially for large-scale problems. In this study, an efficient probabilistic collocation based
iterative Kalman filter (PCIKF) is developed. The polynomial chaos expansion (PCE) is employed to represent
and propagate the uncertainties, and an iterative form of Kalman filter is used to assimilate the measurements.
To further reduce the computational cost, only the zeroth and first-order ANOVA (analysis of variance) com-
ponents are kept in the PCE approximation. As demonstrated by two numerical case studies, PCIKF shows sig-
nificant superiority over IEnKF in terms of accuracy and efficiency. The developed method has the potential to
reliably predict and develop best management practices for landfill gas production.

1. Introduction

Sanitary landfill is a main way to dispose municipal solid waste
around the world. Strict environmental rules and urgent demands for
best management practices have contributed to considerable research
in modeling the dynamics of landfill gas (LFG), with the purpose of
minimizing potential hazards that are associated with its generation
and emission (El-Fadel et al., 1997). Meanwhile, LFG, which is mainly
composed of CH4 and CO2, is also a promising source of renewable
green energy (Nyns and Gendebien, 1993), providing an additional
incentive for the study of LFG dynamics.

Numerical models have been widely used to characterize the LFG
transport (EI-Fadel et al., 1996; Xi and Xiong, 2013). For accurate
prediction, it is crucial to identify the model parameters in the gov-
erning equations. However, the landfill properties are strongly hetero-
geneous (Zacharof and Butler, 2004). As these parameters are difficult
to determine, they are often indirectly inferred from monitoring data
using data assimilation methods.

Among the many data assimilation methods, the ensemble Kalman
filter (EnKF) has become the most popular one (Houtekamer et al.,
2005; Chen and Zhang, 2006; Evensen et al., 2007; Gharamti et al.,

2013; Xue and Zhang, 2014). Generally, EnKF is based on the Gaussian
assumption, which makes it inherently suitable for tackling Gaussian
linear problems (Evensen, 2007). To improve the performance of EnKF
in estimating non-Gaussian parameters, different methods have been
proposed. For example, EnKF has been combined with the level set
technique for history matching of facies distribution (Chang et al.,
2010). The normal-score transformation-based EnKF has been proposed
to estimate the logarithmic conductivity of bimodal aquifers
(Zhou et al., 2011).

In subsurface flow problems, the logarithmic permeability field is
commonly modeled as Gaussian random field. However, the governing
equations for multiphase flow in porous media are nonlinear.
Furthermore, the observation operator may be nonlinear. Thus, the
states and observations may be non-Gaussian distributed even if the
input parameters are Gaussian. To improve the performance in strongly
nonlinear problems, various iterative forms of EnKF (IEnKF) have been
proposed (Aanonsen et al., 2009; Li and Reynolds, 2007; Wen and
Chen, 2006). The key in IEnKF is to use ensemble members to calculate
the sensitivities, which are obtained by solving adjoint equations in
traditional approaches (Wu et al., 1999). Furthermore, iterations from
the initial time (Zafari et al., 2006) or the last assimilation step
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(Wen and Chen, 2006) are employed to avoid the inconsistence be-
tween the updated parameters and states in EnKF. For strongly non-
linear problems, an adaptively adjusted iteration step length is usually
required (Gu and Oliver, 2007).

No matter which form of EnKF is chosen, the sampling errors in
generating the initial ensemble are inevitable. Fishman (1996) reported
that the error convergence rate is N1/ e , where Ne is the ensemble size.
Thus the accuracy of EnKF largely depends on the ensemble size. On the
other hand, the requirement for a large Ne will result in a huge com-
putational cost, especially for large-scale problems. Therefore, a com-
promise has to be made between the accuracy and affordable compu-
tational cost in practical applications.

To alleviate the computational burden, one promising approach is
to employ reduced-order modeling techniques (Asher et al., 2015). He
et al. (2013) combined EnKF with trajectory piecewise linearization
(TPWL). The Karhunen–Loeve (KL) expansion was employed as a di-
mension reduction tool to parameterize the random parameter field
with a relatively small number of Gaussian variables. Then the TPWL
was used to enrich the ensemble at a low cost. In this work, we employ
the polynomial chaos expansion (PCE), which has gained popularity in
uncertainty quantification (Saad and Ghanem, 2009). With the PCE,
stochastic information is expressed by the orthogonal polynomials of
random variables. Then different methods, e.g., stochastic Galerkin
projection (Ghanem and Spanos, 2003), regression method
(Isukapalli et al., 1998), and probabilistic collocation method (PCM)
(Tatang et al., 1997; Sun et al., 2013) can be employed to calculate the
PCE coefficients. It has been shown that, PCE-based methods exhibit
faster convergence compared with Monte Carlo-based methods
(Xiu, 2010).

For efficient data assimilation, a probabilistic collocation based
Kalman filter (PCKF), which combines the Kalman filter with PCM, has
been proposed by Zeng and Zhang (2010). Since PCM is a non-intrusive
method, any existing simulator can be directly used to solve the gov-
erning equations with collocational parameter realizations. It should be
pointed out that the computational cost of this method drastically in-
creases with the number of PCE terms. Therefore, the superiority of
PCKF over EnKF is only valid under certain conditions (Zeng et al.,
2011). To further improve the performance, the adaptive probabilistic
collocation based Kalman filter (APCKF) has been developed based on
the combination of PCKF and functional analysis of variance (ANOVA)
(Li et al., 2014). In APCKF, a few important low-dimensional ortho-
gonal polynomial functions are adaptively identified. It has been shown
that, based on a restart scheme, APCKF outperforms traditional EnKF in
data assimilation for unsaturated flow (Man et al., 2016). To better
handle the nonlinearity and further improve the accuracy, a more so-
phisticated scheme, i.e., the iterative form of EnKF with an adaptively
adjusted analysis step length (Gu and Oliver, 2007), may be needed.

A landfill is a large-scale porous medium, and the gas generation
and transport dynamics therein are nonlinear. To better predict the LFG
transport, Li et al. (2012) used EnKF to estimate the heterogeneous
permeability field of a single-phase gas transport model. However, in
addition to the gas phase, landfills usually contain leachate from dif-
ferent sources, such as the precipitation, intra-particle water released
from wastes when undergoing biochemical degradation and compres-
sion by self-gravity, and recirculation of leachate. When the leachate
level gets higher, it becomes more difficult to collect gas from the
landfill, because the relative gas permeability reduces drastically as the
water content increases in a multiphase flow system. Therefore, it is
important to consider the liquid-gas coupling, especially in China where
municipal solid wastes are usually with high water content (Chen et al.,
2010; Yao et al., 2015).

Motivated by recent progresses in EnKF and multiphase flow mod-
eling for landfill, we develop a probabilistic collocation based iterative
Kalman filter (PCIKF) for data assimilation of liquid-gas flow in land-
fills. The performance of this method is tested with numerical cases and
compared with that of IEnKF. The remainder of this paper is organized

as follows: Section 2 presents the mathematical models for liquid and
gas flow in a sanitary landfill. Section 3 provides algorithm details of
PCIKF, and illustrative examples are presented in Section 4. Finally,
some conclusions are given in Section 5.

2. System model

In this study, we focus on landfill gas transport with the existence of
leachate. The governing equations are shown below (Pinder and
Gray, 2008)
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where ϕ is the porosity [-]; pc [ML−1T−2] is the capillary pressure,
defined as the difference between the gas pressure pg [ML−1T−2] and
liquid pressure pw [ML−1T−2], i.e.,

= −p p pc g w (3)

The phase fluxes qw and qg [ML−2T−1] can be calculated through
the modified Darcy's law
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where kini is the intrinsic permeability [L2]; μw and μg are the viscosities
for liquid and gas [ML−1T−1], respectively; the relative permeabilities
of liquid phase kr,w and gas phase kr,g are described by the Mualem
approach (Mualem, 1976)
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where m is the shape factor; the capillary pressure pc varies with the
effective water saturation Se [L3L−3] as follows (van Genuchten, 1980)
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where pe is the gas entry pressure; Swr and Sgr are the residual satura-
tions of the liquid and gas phases, respectively.

3. Methods

3.1. Iterative ensemble Kalman filter (IEnKF)

EnKF is essentially a Monte Carlo-based variant of the standard
Kalman filter (Evensen, 2007). Assume that the response of a system
can be simulated by

= Fd x( ) (10)

where F(·) represents the system model; d is the model output; x de-
notes the joint state vector consisting of model parameters m and state
variables r

=x mr[ ]T (11)

Usually, model parameters m and state variables r are updated si-
multaneously, which makes EnKF very computationally efficient
(Anderson, 2001). However, for a strongly nonlinear problem, it may be
impossible to guarantee the consistence between the updated state
variables r and model parameters m without re-solving the nonlinear
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