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a b s t r a c t 

A multiscale mimetic method is developed for the simulation of multiphase flow in fractured porous 

media in the context of an embedded discrete fracture model (EDFM). The EDFM constructs independent 

grids for matrix and fracture system. Therefore, it is an efficient and practical flow model as it avoids 

the complicated unstructured grid subdivision and computing process. In order to extend the EDFM to 

field-scale applications, we integrate EDFM into a multiscale mimetic method. In this work, we use the 

multiscale basis functions to capture the detailed interactions between the fractures and the background. 

The multiscale basis functions are calculated numerically by solving EDFM on the local fine-grid with 

mimetic finite difference (MFD) method. The MFD method is conservative and robust, which makes it 

possible to deal with highly complex grid systems. Through combination of multiscale mimetic method 

and EDFM, this formulation can generate accurate velocity field and pressure field on the fine-scale grid 

more efficiently than the traditional methods. Numerical results are presented for verification of this 

multiscale mimetic approach for embedded discrete fracture media, and demonstrate its computational 

efficiency. The results show that this method is an accurate and efficient method for flow simulation in 

real-field fractured heterogeneous reservoirs. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Lots of engineering problems, such as reservoir development, 

groundwater transport, geothermal exploitation, largely depend on 

the information provided by simulation of flow through porous 

media. Apart from their intrinsic heterogeneous properties, these 

geological formations commonly contain complex fractures, with 

multiple scales and different conductivity properties. Given their 

essential influence on flow patterns, the fractures should be repre- 

sented accurately. 

Among the methods targeted at describing fractures explic- 

itly, single-porosity model ( Ghorayeb and Firoozabadi, 20 0 0 ) re- 

gards fractures as a narrow high-permeability region. Fully discrete 

single-porosity models may contain up to 100 million grid cells. 

Hence, the simulation of such models is deemed intractable even 

with the advent of supercomputers. Discrete fracture model (DFM) 

( Huang et al., 2011a, 2011b; Karimi-Fard and Firoozabadi, 2001; 

Hauge and Aarnes, 2009; Hoteit and Firoozabadi, 2008 ) is based on 

conforming unstructured grid generation techniques which treat 

fractures as inner boundaries of the matrix cells. However, this 

technique would cause difficulties in grid generation and comput- 
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ing progress. Especially when the distances between fractures are 

small, the grid generation often has a poor quality which will lead 

to miscalculation. As an alternative, the embedded discrete frac- 

ture model (EDFM) ( Lee et al., 2001; Li and Lee, 2008; Yan et al., 

2016 ) constructs independent grids for matrix and fracture system. 

That is, the discrete fracture network is embedded into the matrix 

structured grid system directly. Matrix and fractures are coupled 

by transfer functions. Therefore, EDFM is appealing for its ability to 

bypass the challenges related to unstructured grid ( Moinfar et al., 

2012; Zhou et al., 2014 ). 

Even though EDFM is an efficient flow model due to its ability 

to avoid the complicated unstructured grid subdivision and com- 

puting process, its ability for field-scale simulation is limited by 

numerical methods used to solve the flow model. Even after ho- 

mogenization of small-scale fractures, the remaining degrees of 

freedom still exceed the controllable level of traditional numeri- 

cal methods. This issue motivated the development of multiscale 

methods for EDFM. 

The multiscale methods discussed herein originate from the 

seminal paper ( Hou and Wu, 1997; Efendiev and Wu, 2002 ), 

in which a governing equation with zero right hand side (i.e., 

homogeneous problem) is solved in each element to construct 

basis functions. It is similar to the ideas proposed earlier by 

Babuska et al. (1992) and Babuska and Osborn (1981) . Then this 
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idea has been expanded by many researchers and spawned a se- 

ries of relevant methods, including mixed multiscale finite-element 

(MsMFEM) ( Chen and Hou, 20 03; Aarnes, 20 06, 20 05 ), General- 

ize multiscale finite element method (GMsFEM) ( Efendiev et al., 

2013, 2015 ), multiscale finite-volume (MsFV) method ( Jenny et al., 

20 03, 20 04; Hajibeygi and Jenny, 2009 ). All these methods con- 

struct basis functions by solving local flow problems to incorporate 

fine-scale effects into coarse-scale flow equations. Early versions 

of multiscale methods are proposed as a robust alternative to up- 

scaling methods. Shortly thereafter, these methods have been ex- 

panded to model multiphase flow in porous media ( Juanes, 2005; 

Krogstad et al., 2009; Efendiev et al., 2006 ). 

During the past few years, multiscale methods have been ex- 

tended to simulate fluid flow in fractured media. They were ini- 

tially proposed to model fractured porous media which treat frac- 

tures as narrow high-permeability regions ( Natvig et al., 2011; Gul- 

bransen et al., 2009 ). Later, instead of regarding fractures as volu- 

metric element, discrete fracture model was integrated into mul- 

tiscale finite element method ( Zhang et al., 2016 ) and GMsFEM 

( Akkutlu et al., 2015 ). Recently, a combination of iterative multi- 

scale finite volume method and hierarchical fracture model was 

presented ( Hajibeygi et al., 2011; Matei et al., 2016 ). These mul- 

tiscale methods have achieved satisfying results and made great 

contributions to the exploration of multiscale methods toward 

fractured porous media. 

In this work, we develop a multiscale mimetic method in the 

context of an embedded discrete fracture model (EDFM). The final 

matrix formulation of the multiscale mimetic method is similar to 

the multiscale mixed finite method. However, the discretization of 

the multiscale mimetic method is similar to finite volume method. 

Mimetic finite difference (MFD) method builds computational for- 

mulation on separate gridcells by introducing pressures located at 

the middle of the cell faces. This makes MFD could deal with any 

complex grid. 

To summarize, different from existing multiscale formula- 

tions, by combing multiscale mimetic method and EDFM, this 

method could avoid the complicated unstructured grid generation 

and computing process. Moreover, as discussed in many works 

( Skaflestad and Krogstad, 2008; Aarnes et al., 2008, 2014 ), multi- 

scale mimetic method can deal with highly complex grid systems 

because of its applicability for the complex unstructured grid. Be- 

sides, the excellent local conservation property of MFD method 

makes multiscale mimetic method produce conservative velocity 

fields which are necessary for flow simulation. 

This paper proceeds as follows: we start by introducing the em- 

bedded discrete fracture model and its discretization. Next, we de- 

scribe the multiscale mimetic method briefly and then extend it to 

deal with the EDFM system. In the numerical experiment section, 

several 2D and 3D numerical test cases are presented to validate 

the correctness and effectiveness of the multiscale method. Finally 

the concluding remarks were given in the final section. 

2. Embedded discrete fracture modelling 

2.1. Mathematical model 

The flow system for incompressible and isothermal two-phase 

flow without considering the influence of gravity in fractured me- 

dia is governed by pressure and saturation equations. The pressure 

equations are written as 

Matrix system: 

−∇ · ( K m 

λm 

· ∇ p m 

) = q m 

+ 

q mf 

V m 

δmf (1) 

Fracture system: 

−∇ · ( K f λf · ∇ p f ) = q f −
q mf 

V f 

− q ff 
V f 

δff (2) 

Here, K i ( i = m, f ) stands for the permeability tensor; p i, V i rep- 

resent pressure, volume of grid cells, respectively; q i = q i n + q i w 

is 

sink/source term (the subscript w denotes the wetting phase and 

n denotes the non-wetting phase); λi = λi n + λi w 

is the total mo- 

bility where λi α = k ri α/ μα is the mobility of phase α, which de- 

pends on relative permeability k ri α and viscosity μα; q mf is transfer 

flow between matrix and fracture; q ff is transfer flow between in- 

tersecting fractures; δmf = 1 if matrix cell contains fracture cells, 

else δmf = 0; δff = 1 if fracture cell intersects with another fracture 

cells, else δff = 0. 

The pressure in matrix is assumed to be continuous, therefore, 

the crossflow term can be written in this form 

q mf = −T mf ( p m 

− p f ) (3) 

Here, T mf = k mf λmf A mf / d , where A mf is interfacial area, d is 

equivalent distance between matrix cell and fracture cell, λmf is 

total mobility decided by upstream weight method, and k mf is har- 

monically averaged permeability. 

The crossflow term q ff of intersected fractures ( Fig. 1 ) is given 

by ( Karimi-Fard et al., 2004 ) 

q ff = T ff 
(

p f i − p f j 
)

(4) 

Here, T mf = λffT f i T f j /( T f i + T f j ), where T f i = k f i d f i / ̂
 d i , T fj = k fj d fj / ̂

 d j ; 

λff is total mobility decided by upstream weight method; d f and 

k f stand for fracture aperture and permeability respectively; ̂ d 

represents the average normal distance between the centre of frac- 

ture segments and the intersections of fractures. 

The saturation equations are written as: 

Matrix system 

φm 

∂ S mw 

∂t 
+ ∇ · v mw 

= q mw 

+ 

q m f w 

V m 

δm f (5) 

v mw 

= f mw 

[ v m 

+ K m 

λmn · ∇ p mc ] (6) 

Fracture system 

φf 

∂ S f w 

∂t 
+ ∇ · v f w 

= q f w 

− q m f w 

V f 

δm f −
q f f w 

V f 

δ f f (7) 

v f w 

= f f w 

[ v f + K f λ f n · ∇ p f c ] (8) 

Here, φi denotes the porosity, f i w 

= λi w 

/ λi denotes the fractional 

flow function, and p ic is the capillary pressure. 

In this work, considering the computational efficiency, we use 

IMPES strategy to solve the coupled system. IMPES means the flow 

equations are solved implicitly to obtain the velocity field. Then 

the velocity field is employed to solve the saturation equations. 

2.2. Discretization 

Matrix grid and fracture grid are constructed to solve the flow 

equations ( Fig. 2 ). The fracture grid is embedded into matrix grid 

independently. Therefore, this method can alleviate the gridding 

complexities. 

To efficiently handle polyhedral cells, MFD is used as our dis- 

cretization method. As shown in Fig. 3 , A k is the interface between 

the matrix cells, n k is the normal to the interface, x ik is the vector 

pointing from cell centroid to the interface centroid. 

Let v f 
m i 

= [ v m i 1 , v m i 2 , · · ·, v m i n ] 
T be the fluxes of interfaces of �i , 

p e 
m i 

and p 
f 

m k 
is the average pressures located at the gridcell centres 

and interfaces respectively. These quantities are related through a 

transmissibility matrix T m i , that is 
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