Accepted Manuscript

Title: Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity

Author: Thao Thanh Le Hoang Khanh Nguyen Jong-Rok Jeon Arokiasamy J. Francis Yoon-Seok Chang

PII: S0304-3894(15)00082-5

DOI: http://dx.doi.org/doi:10.1016/j.jhazmat.2015.02.001

Reference: HAZMAT 16572

To appear in: Journal of Hazardous Materials

Received date: 18-8-2014 Revised date: 31-1-2015 Accepted date: 1-2-2015

Please cite this article as: Thao Thanh Le, Hoang Khanh Nguyen, Jong-Rok Jeon, Arokiasamy J.Francis, Yoon-Seok Chang, Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity, Journal of Hazardous Materials http://dx.doi.org/10.1016/j.jhazmat.2015.02.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Nano/bio treatment of polychlorinated biphenyls with evaluation of

comparative toxicity

Thao Thanh Le^{a#}, Hoang Khanh Nguyen^{a#}, Jong-Rok Jeon^b, Arokiasamy J. Francis^c, Yoon-Seok

Chang^{a*}

^aSchool of Environmental Science and Engineering, POSTECH, Pohang 790-784, Republic of

Korea

^bCorporate R&D, LG Chem Research Park, Daejeon 305-380, Republic of Korea

^cDivision of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Republic of Korea;

and Environmental Sciences Department, Brookhaven National Laboratory, Upton, New York,

USA

* Corresponding author: Prof. Dr. Yoon-Seok Chang School of Environmental Science and

Engineering, Pohang University of Science and Technology (POSTECH),

Pohang 790-784, Republic of Korea

Tel.: +82 54 279 2281; Fax: +82 54 279 8299

E-mail address: yschang@postech.ac.kr (Y.-S. Chang)

Abstract

The persistence of polychlorinated biphenyl (PCB) Aroclor 1248 in soils and sediments is

a major concern because of its toxicity and presence at high concentrations. In this study, we

developed an integrated remediation system for PCBs using chemical catalysis and

biodegradation. The dechlorination of Aroclor 1248 was achieved by treatment with bimetallic

nanoparticles Pd/nFe under anoxic conditions. Among the 32 PCB congeners of Aroclor 1248

examined, our process dechlorinated 99%, 92%, 84%, and 28% of tri-, tetra-, penta-, and

hexachlorinated biphenyls, respectively. The resulting biphenyl was biodegraded rapidly by

Download English Version:

https://daneshyari.com/en/article/576376

Download Persian Version:

https://daneshyari.com/article/576376

<u>Daneshyari.com</u>