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a b s t r a c t 

Modeling of transient dynamics of an interface between fluids of identical density and viscosity, but dif- 

ferent otherwise, is of great interest in aquifer hydraulic, and advective contaminant transport, and has 

broad application. Closed-form solutions are often available for problems with simple, practically impor- 

tant geometry, but the integrals that appear in such solutions often have integrands with two or more 

oscillatory factors. Such integrals pose difficulties for numerical evaluation because the positive and nega- 

tive contributions of the integrand largely cancel and the integrands decay very slowly in the integration 

domain. Some problems with integrands with a single oscillatory factor were tackled in the past with an 

integration/summation/extrapolation (ISE) method: breaking the integrand at consecutive zeros to obtain 

an alternating series and then using the Shanks algorithm to accelerate convergence of the series. How- 

ever, this technique is ineffective for problems with multiple oscillatory factors. We present a compre- 

hensive strategy for evaluation of such integrals that includes a better ISE method, an interval truncation 

method, and long-time asymptotics; this strategy is applicable to a large class of integrals with either 

single or multiple oscillatory factors that arise in modeling of groundwater flow and transport. The effec- 

tiveness of this methodology is illustrated by examples of integrals used in well hydraulics, groundwater 

recharge design, and particle tracking. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

One problem of interest in hydrogeology is the dynamics of an 

interface between two fluids with similar density and viscosity, 

but with different water quality. An example is managed aquifer 

recharge, where two fluids may differ just by the presence of bio- 

logical agents in tiny concentrations. In such cases, particle track- 

ing is the most direct tool for modeling a moving interface with 

high resolution in time and space, spared of numerical dispersion 

effects, and is well suited for modern visualization tools. Many 3D 

problems of groundwater flow hydraulics have closed-form solu- 

tions consisting of integrals on an infinite domain with oscillatory 

factors in the integrands. In managed aquifer recharge and water 

quality studies, these are trigonometric functions in Cartesian co- 

ordinates ( Zlotnik and Ledder, 1993 ) or Bessel functions in cylin- 

drical coordinates ( Bruggeman, 1999; Dagan, 1967; Hantush, 1967; 

Zlotnik and Ledder, 1992 ). Although the idea is straightforward, 

this approach requires a large number of computations of integrals 
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that represent the hydraulic head and velocity; thus, any difficulty 

in integral computation hinders application of particle tracking al- 

gorithms. Such applications create a need for computationally ef- 

ficient evaluation of integrals with oscillatory integrands. No one 

method is ideal for all cases, so the best practical approach is to 

devise a comprehensive strategy that balances the needs for high 

precision and reasonable computational time by blending sophisti- 

cated methods as needed with fast methods when possible. 

In principle, one can use a standard quadrature method to inte- 

grate over an interval [0, U ], where U is large enough for the error 

caused by the domain truncation to be small. (See Auluck, 2012 , 

for example.) This is inefficient for integrands with slowly decay- 

ing amplitudes, such as products of two Bessel functions, because 

the positive and negative portions of the integrand largely cancel 

out, making the computation slow and susceptible to round-off er- 

rors. While this approach seems too naïve to be of value, it can be 

the method of choice for some problems, provided the amplitude 

decay is not too slow and a suitable upper bound value can be de- 

termined. We present a practical solution to this problem in the 

methods section. 

The computation of integrals with oscillatory integrands has 

been addressed for some specific groundwater flow problems. 
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Peng et al. (2002) obtained an integral for the hydraulic head in 

a confined aquifer with constant head at the wellbore: 

h = 1 − 2 

π

∫ ∞ 

0 

e −tu 2 J 0 (u ) Y 0 (ru ) − Y 0 (u ) J 0 (ru ) 

u [ J 2 
0 
(u ) + Y 2 

0 
(u )] 

du. (1) 

To evaluate this integral, the integration domain was partitioned 

into segments between the zeros of the integrand. Gaussian 

quadrature was used to evaluate the integral on each segment, and 

then Shanks extrapolation was used to accelerate convergence of 

the sum. 

Yeh et al. (2008) considered the drawdown resulting from a 

well with a constant pumping rate in a wedge-shaped region be- 

tween two streams. The formula consists of an infinite sum over a 

discrete set of ν values of integrals of the form ∫ ∞ 

0 

(
1 − e −tu 2 

)
u 

−1 J ν (ru ) J ν (u ) du. (2) 

The principal quantity of interest in this paper was the stream de- 

pletion rate, for which the integrals reduce to ∫ ∞ 

0 

(
1 − e −tu 2 

)
u 

−1 J ν (u ) du (3) 

by averaging over r . These authors computed the integrals (3) us- 

ing the method of Peng et al. (2002) , but they did not compute the 

integrals having two oscillatory factors (2) . 

Methods involving partition of an integral at regular inter- 

vals and summation of the approximations with a convergence 

accelerator are called ISE (Integration, Summation, Extrapolation) 

methods (see, for example, Davis and Rabinowitz, 1984 ). The ISE 

method used by Peng et al. is effective for their problem be- 

cause the oscillatory function J 0 (u ) Y 0 (ru ) − Y 0 (u ) J 0 (ru ) has zeros 

that become regularly spaced as u → ∞ . The same is true for 

(3) ; however, there are many important closed form groundwater 

flow formulas with multiple oscillatory integrand factors, such as 

(2) . Other examples stem from infiltration at a uniform rate from 

a circular recharge basin, including the water table rise using the 

Dupuit–Forchheimer approximation ( Hantush, 1967 ), 

h 

2 − h 

2 
0 = 

2 V 

πK 

f (q, ρ) , f (q, ρ) = 

∫ ∞ 

0 

(
1 − e −qu 

)
J 0 (ρu ) J 1 (u ) 

du 

u 

2 
, 

(4) 

the hydraulic head for a confined aquifer of infinite depth near a 

polder ( Bruggeman, 1999 ), 

h (r, z, t) = 

qR 

K 

∫ ∞ 

0 

J 0 (ru ) J 1 (Ru ) P c 

(
uz 

2 

, 
u 

√ 

t 

β

)
du 

u 

, (5) 

where 

P c (x, y ) = 

1 

2 

e 2 x erfc 

(
x 

y 
+ y 

)
− 1 

2 

e −2 x erfc 

(
x 

y 
− y 

)
, 

and the (dimensionless) hydraulic head in an unconfined aquifer 

( Zlotnik and Ledder, 1992 ), 

h (r, z, t) = 

∫ ∞ 

0 

R 

(
1 − e −tu tanh u 

)
J 0 (ru ) J 1 (Ru ) 

cosh zu 

u sinh u 

du. (6) 

In Section 2.2 , we illustrate the failure of extrapolation methods 

when zeros of integrands are not evenly spaced. 

Special methods have been developed for integrands that con- 

tain products of Bessel functions. Van Deun and Cools (2006) , 

2008 ) present methods for integrals of the forms ∫ ∞ 

0 

x m �k 
i =1 [ J νi 

(a i x ) ] dx, 

∫ ∞ 

0 

e −cx x m �k 
i =1 [ J νi 

(a i x ) ] dx, 

∫ ∞ 

0 

x m 

x 2 + r 2 
�k 

i =1 [ J νi 
(a i x ) ] dx, (7) 

but these can be used for groundwater flow only when there are 

no additional factors in the integrand. 

A more general method is that of Lucas (1995) , which applies 

to any convergent integral of the form ∫ ∞ 

0 

f (x ) J μ(ρx ) J ν (τx ) dx. (8) 

This method has found widespread application in other areas of 

science, but it appears to have been referenced only once for a 

groundwater flow application, and those authors did not actually 

use it for any computations ( Tartakovsky et al., 20 0 0 ). It has been 

extended and coded into a Matlab package ( Ratnanather et al., 

2014 ), which offers the possibility of a single method for all of the 

problems presented here. (At present there is no implementation 

of this algorithm in Mathematica.) This is a reasonable approach 

when computation time is unimportant, but we will see that con- 

siderable time can be saved by supplementing Lucas’ method with 

more efficient ones. 

Modern computer algorithms are designed to achieve almost 

unlimited precision, which is fine when the total number of com- 

putations is limited. However, there are circumstances where it is 

necessary to do a huge number of computations, and in these cases 

it is necessary to trade some precision for computational speed, 

particularly since groundwater flow models are just hydrogeologi- 

cal approximations and parameter values are not known to a high 

degree of accuracy. An example is a recharge management sce- 

nario, in which it may be important to track the progress of the 

interface between the resident water and the recharged water. This 

surface can be constructed from a set of particle paths, obtained by 

integrating the velocity vector over time from points on the ini- 

tial interface. For the case of an aquifer of large horizontal extent 

with uniform circular areal recharge, the hydraulic head is given by 

(6) and the tracking procedure requires numerous computations of 

radial and vertical velocity integrals given in cylindrical coordinates 

(r, z) at time t by 

V r (r, z, t) = 

∫ ∞ 

0 

R 

(
1 − e −tu tanh u 

)
J 1 (ru ) J 1 (Ru ) 

cosh zu 

sinh u 

du, (9) 

and 

V z (r, z, t) = −
∫ ∞ 

0 

R 

(
1 − e −tu tanh u 

)
J 0 (ru ) J 1 (Ru ) 

sinh zu 

sinh u 

du, (10) 

both for r > 0, 0 ≤ z ≤ 1, t > 0, where R is the radius of the 

recharge basin. The total number of integral evaluations required 

to produce even a coarse movie of the surface is at least in the 

thousands and may be two orders of magnitude higher. 

For a simulation that requires many thousands of integral com- 

putations, the total time requirement using Lucas’ method is pro- 

hibitive, but there are other methods that are more efficient for 

some times and locations. The goal of this paper is to present a 

comprehensive strategy for combining a variety of methods for a 

broad class of problems that includes (2–6, 9, 10). The methods 

needed for this strategy are presented in Section 2 and applied to 

specific examples in Section 3 with a focus on comparison. 

2. Methods 

Models for axisymmetric groundwater flow in a region of infi- 

nite horizontal extent yield solutions that can be written generi- 

cally as 

I(r, z, t;�, f, φ) = 

∫ ∞ 

0 

(
1 − e −tφ(u ) 

)
�(u, r) f (u, z) du, 

r, z, t ≥ 0 , (11) 

where r, z , and t are dimensionless radial and vertical coordinates 

and time; � , f , and φ are given functions, with � consisting of 

one or two bounded oscillatory factors and φ nonnegative and 
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