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a b s t r a c t 

The sources of uncertainty in land surface models are numerous and varied, from inaccuracies in forc- 

ing data to uncertainties in model structure and parameterizations. Majority of these uncertainties are 

strongly tied to the overall makeup of the model, but the input forcing data set is independent with its 

accuracy usually defined by the monitoring or the observation system. The impact of input forcing data 

on model estimation accuracy has been collectively acknowledged to be significant, yet its quantifica- 

tion and the level of uncertainty that is acceptable in the context of the land surface model to obtain 

a competitive estimation remain mostly unknown. A better understanding is needed about how mod- 

els respond to input forcing data and what changes in these forcing variables can be accommodated 

without deteriorating optimal estimation of the model. As a result, this study determines the level of 

forcing data uncertainty that is acceptable in the Joint UK Land Environment Simulator (JULES) to com- 

petitively estimate soil moisture in the Yanco area in south eastern Australia. The study employs hydro 

genomic mapping to examine the temporal evolution of model decision variables from an archive of val- 

ues obtained from soil moisture data assimilation. The data assimilation (DA) was undertaken using the 

advanced Evolutionary Data Assimilation. Our findings show that the input forcing data have significant 

impact on model output, 35% in root mean square error (RMSE) for 5cm depth of soil moisture and 15% 

in RMSE for 15cm depth of soil moisture. This specific quantification is crucial to illustrate the signifi- 

cance of input forcing data spread. The acceptable uncertainty determined based on dominant pathway 

has been validated and shown to be reliable for all forcing variables, so as to provide optimal soil mois- 

ture. These findings are crucial for DA in order to account for uncertainties that are meaningful from the 

model standpoint. Moreover, our results point to a proper treatment of input forcing data in general land 

surface and hydrological model estimation. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The estimation of soil moisture through land surface models 

mainly incorporates a combination of model physics, initial states, 

parameters, and forcing data. The majority of these components 

are inherent to the overall makeup of the model, defining how the 

model handles input forcing data. The model components are fun- 

damental to the evaluation of land surface states in response to 

meteorological forcing. However, the overall uncertainty in model 

output is associated with uncertainties of the various model in- 

puts and components, which interact and are strongly linked such 

that their respective uncertainties are difficult to separate. The in- 

put forcing data set is independent from the overall model makeup 
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and has separate uncertainty levels for each variable as defined 

by their respective observation systems. While the impact of the 

forcing data on the accuracy of model estimation is universally 

recognized to be significant ( Beven and Binley, 1992; De Lannoy 

et al., 2006; Durand and Margulis, 2008; He et al., 2011; Mantovan 

and Todini, 2006; Moradkhani and Hsu, 2005; Raleigh, 2013; Sala- 

mon and Feyen, 2009; Seibert, 1997; Steinschneider et al., 2012; 

Uhlenbrook et al., 1999; Vrugt et al., 2002; Zehe et al., 2005 ), its 

quantification remains largely unknown in most modeling proce- 

dures. That is, the majority of modeling procedures have limited 

knowledge about how much of a model’s estimation accuracy is 

attributable to its forcing data uncertainty. Consequently, it is dif- 

ficult to determine the level of uncertainty in forcing data that is 

acceptable, in the context of the model, to provide an optimal es- 

timate of soil moisture. 

The acceptable level of forcing data uncertainty, while specific 

to a particular model, will provide for a given model a threshold 
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of uncertainty bound beyond which deterioration of the model es- 

timation accuracy will occur. An estimate of the acceptable level 

of uncertainty in forcing data will separate the inaccuracies in 

model prediction into two categories: those that are inherent in 

the model, and those from the forcing data. Note that by ac- 

ceptable level of uncertainty in forcing data, we are referring to 

the amount of uncertainty from the forcing data that is admissi- 

ble/appropriate in the context of the model without deteriorating 

the model estimation accuracy. 

An increased knowledge of forcing data uncertainty will have 

a crucial impact on water and climate predictions. In particular, an 

estimate of forcing data uncertainty will provide an important con- 

tribution, which is usually missing, to error specification in data 

assimilation (DA) procedures. Ensemble distributions (i.e., spread) 

in DA are usually generated through perturbation of input forcing 

data ( Alemohammad et al., 2015; Clark et al., 2006; Wojcik et al., 

2014 ), mostly with limited knowledge of the impact of forcing er- 

ror on model ensemble spread. Forcing data uncertainty is also 

critical in climate change studies and forecasting systems ( Nagler 

et al., 2008; Raleigh, 2013; Schär et al., 2004; Steinschneider et al., 

2012; Troch et al., 2009 ), to provide an estimate of the changes 

(and uncertainties) in model output in response to variability in 

forcing data. An understanding of the impact of forcing data un- 

certainty on model prediction will therefore provide the capability 

to estimate the level of variability that is required in weather sys- 

tems and forecasts to initiate triggers in water resource systems. 

Few studies including Liu and Gupta (2007) ; Vrugt and Robin- 

son (2007) ; Wagener et al. (2003) ; and He et al. (2012) have 

examined uncertainty in model components, and even fewer 

( Alemohammad et al., 2015; Maggioni et al., 2011 ) have actually 

examined uncertainty in forcing data in relation to the model out- 

put. Consequently, this study quantifies the uncertainty threshold 

in forcing data that can be incorporated into the Joint UK Envi- 

ronment Simulator (JULES) model in the context of soil moisture 

estimation without a significant deterioration in model estimation 

accuracy, for the Yanco area in southeast Australia. It also pro- 

vides a methodology to estimate an acceptable threshold of forc- 

ing data uncertainty in the JULES model through three modeling 

approaches. These modeling approaches are model calibration, data 

assimilation, and multi-dimensional clustering which is used to as- 

sess values in model decision space (i.e., the interval defined by 

both model parameters and input forcing variables). The calibra- 

tion and data assimilation procedures employ computational tech- 

niques from the state-of-the-art multi-objective evolutionary strat- 

egy. Specifically, the calibration is based on the Non-dominated 

Sorting Genetic Algorithm - II (NSGA-II) developed by Deb et al. 

(2002) , whereas the DA method uses the evolutionary data as- 

similation (EDA) scheme demonstrated in Dumedah and Walker 

(2014b ); Dumedah et al. (2015) ; and Dumedah (2015) . 

The three modeling approaches: calibration, data assimilation, 

and multi-dimensional clustering used in this study provide unique 

roles toward the overall goal of quantifying forcing data uncer- 

tainty in land surface modeling. Calibration, though subject to a 

specific time period of observation data, has an important role in 

determining optimized values in model decision space to generate 

model outputs which best match observed data. It is noted that the 

calibration procedure is supplementary and represents an interme- 

diate step to the data assimilation procedure. Data assimilation has 

been widely credited for its ability to update model predictions 

through time, and to account for uncertainties in model and ob- 

servation data. However, the temporal changes in model decision 

space resulting from data assimilation holds the potential for as- 

sessing model behavior under changing hydro-meteorological con- 

ditions. The temporal characteristic of DA is crucial in this study 

in order to assess the temporal evolution of the impact of forcing 

data uncertainty on the JULES model at different uncertainty lev- 

els across time. Consequently, this study uses data assimilation to 

provide an archive of updated ensemble members in model deci- 

sion space through several assimilation time periods. The role of 

the multi-dimensional clustering is to determine commonalities in 

model decision space for the calibration output and the updated 

ensemble members. 

1.1. Study area, data sets, and the land surface model 

The case study demonstration is for soil moisture estimation in 

the Yanco area in southeast Australia. The study location is at one 

station (i.e., Y10) out of thirteen OzNet soil moisture monitoring 

stations in the Yanco area ( Smith et al., 2012 ). The Y10 location has 

flat topography, along with grassland, scattered trees and loamy 

textured soil. The study location has extensive soil moisture and 

meteorological instrumentation, and has provided almost continu- 

ous time series of data for validation. 

The land cover data set was obtained through the Australian 

National Dynamic Land Cover Dataset (DLCD) ( Lymburner et al., 

2011 ), which was generated from the 16-day Enhanced Vegeta- 

tion Index composite collected at 250 m spatial resolution from 

the Moderate Resolution Imaging Spectroradiometer. The soil prop- 

erties information including texture, bulk density, saturated hy- 

draulic conductivity, and soil layer thicknesses for horizons A and 

B were obtained from the Digital Atlas of Australian Soils, through 

the Australian Soil Resource Information System ( McKenzie et al., 

20 0 0 ). The meteorological forcing data including incoming short 

and long wave radiations, air temperature, precipitation, wind 

speed, pressure, and specific humidity were obtained from the me- 

teorological record at the study location. 

The soil moisture estimation model used is JULES, a tiled model 

of sub-grid heterogeneity for simulating water and energy fluxes 

between a vertical profile of variable soil layers, land surface, vege- 

tation, and the atmosphere ( Best et al., 2011 ). JULES allows specifi- 

cation of numerous soil layers and variable thickness of soil layers, 

together with nine land surface types including broadleaf, needle- 

leaf, grass (temperate and tropical), shrub, urban, inland water, 

bare soil, and ice-covered surfaces. The JULES model requires ini- 

tialization for variables including the temperatures and the mois- 

ture contents of the soil layers; temperature, density, and albedo 

of the snowpack if present; the temperature and intercepted rain 

and snow on the vegetation canopy; the temperature and depth 

of ponded water on the soil surface, and an empirical vegetation 

growth index. 

The JULES model parameters and forcing variables together 

with their descriptions and intervals are presented in Table 1 . The 

model parameters and forcing variables were allowed to be varied 

within ± 10% of their original values through a relative measure. 

It is noteworthy that the ± 10% interval is based on the soil tex- 

ture variability as obtained from McKenzie et al. (20 0 0) , and does 

not represent the actual variability for model parameters and forc- 

ing variables. The original values of model parameters and forcing 

variables were based on the soil, land cover, and meteorological 

forcing data such that they are physically meaningful for the study 

location in the context of the JULES model. The soil moisture data 

set used to drive the calibration and assimilation was the surface 

5cm depth of in-situ soil moisture at the Y10 location. 

2. Methods 

The framework used to assess the acceptable forcing data un- 

certainty in this study comprises of a number of modeling pro- 

cedures. Specifically, four procedures were used including: (i) a 

calibration procedure to estimate model parameters, (ii) a data 

assimilation procedure using both model parameters and forc- 

ing variables, (iii) a data assimilation procedure using perturbed 
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