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a b s t r a c t 

The peaks-over-threshold (POT) approach is an important alternative to the annual block maxima (ABM) 

method in flood frequency analysis. POT requires the mathematical description of both, the number of 

exceedances over the threshold as well as the values of those exceedances. Regardless the method, esti- 

mates of extreme flood events are typically associated with a large range of uncertainty, which is usually 

showcased by appropriate confidence intervals (CIs). However, existing methods to estimate CIs for return 

levels for the POT approach have mostly neglected its dual-domain character and focused on the distribu- 

tion of the magnitudes only. We present here a customization of two methods, the Profile Likelihood (PL) 

and test inversion bootstrap (TIB), which account for the dual-domain structure of POT. Both, PL and TIB, 

are in the framework of ABM already successfully employed for estimating CIs of extreme flood events. 

A comparison of the performance of the estimated CIs (in terms of coverage error) of the PL, TIB, and 

percentile bootstrap is done. As result, it is seen that both the lower and upper boundary of the CIs are 

strongly underestimated for the percentile bootstrap approach. A similar effect (although in a much less 

pronounced way) can be observed for PL. The performance of the TIB is usually superior to the percentile 

bootstrap and PL and yielded reasonable estimates for the CIs for large return periods. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Flood frequency analysis is of vital importance for water re- 

source design and management. The most common method to es- 

timate extreme floods with defined return period is the annual 

block maxima (ABM) approach (see e.g. Katz et al., 2002 ), where 

for each year the maximal streamflow is taken into account and a 

distribution to this series of maximal floods is fitted. An alterna- 

tive to this procedure is the use of the peaks-over-threshold (POT) 

approach (a good overview is given by Lang et al., 1999 ). POT con- 

siders all peaks over a defined threshold. Therefore, both, the num- 

ber of exceedances over the threshold as well as their magnitudes 

need to be mathematically described. In this sense, POT requires a 

dual-domain modeling. 

The main advantage of POT over ABM is that on the one hand 

POT allows considering more flood events than ABM, while on the 

other hand POT avoids taking minor flood events into account, 

which nonetheless are part of the ABM flood series. Another prob- 

lem that comes with the ABM approach is that even major flood 
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events are disregarded if a more extreme event happened in the 

same year. In contrast, the POT approach still includes such events 

(as long as they can be regarded as independent from each other). 

Nevertheless, irrespective of the approach chosen, estimates of 

extreme flood events come typically with a large range of uncer- 

tainty. Confidence intervals (CIs) are usually used to illustrate this 

uncertainty. In the framework of ABM, many methods have been 

proposed to estimate such CIs ( Burn, 2003; Kyselý, 2007; Obey- 

sekera and Salas, 2014; Rust et al., 2011; Schendel and Thong- 

wichian, 2015 ). Especially successful attempts are the Profile Likeli- 

hood ( Obeysekera and Salas, 2014 ) and the test inversion bootstrap 

(mainly advocated by Carpenter, 1999 and customized to the case 

of return levels of extreme flood events by Schendel and Thong- 

wichian, 2015 ). 

However, attempts to estimate CIs of return levels in the frame- 

work of the POT approach are rare. Moreover, the overwhelming 

majority of these approaches ignore the dual-domain character of 

POT and focus only on the distribution of magnitudes over the 

threshold. For example, Hosking and Wallis (1987) used therefore 

the delta method. Coles (2001) included in this approach the vari- 

ability of the number of exceedances over the threshold (this is to 

our best knowledge the only attempts that accounts for the dual- 

domain character of POT). However, this method assumes that the 
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appropriate estimator of a specific return level is normally dis- 

tributed and that the CI is symmetrically placed regarding the esti- 

mated value. While this may be valid for asymptotic sample sizes, 

it was found that in case of the ABM approach and realistic sam- 

ple sizes, the CIs are not symmetric at all (see e.g. Obeysekera and 

Salas, 2014 ). Coles (2001) also presents a customization of Profile 

Likelihood to POT, but which only accounts for the variability of 

the distribution of magnitudes over the threshold. 

Our aim in this paper is to study the performance of differ- 

ent methods to estimate confidence intervals for return levels for 

the complete POT approach. We choose the Poisson distribution 

for the number of exceedances and the generalized Pareto dis- 

tribution (GPD) for the distribution of the exceedances over the 

threshold. Therefore, the Profile Likelihood as well as the TIB was 

customized to fit this dual-domain situation. Both methods have 

been proven useful in the ABM framework (see e.g. Obeysekera 

and Salas, 2014 for the Profile Likelihood and Schendel and Thong- 

wichian, 2015 for the TIB). As result, the performance of three ap- 

proaches (parametric percentile bootstrap, Profile Likelihood, and 

TIB) regarding the estimation of CIs are compared and their use- 

fulness evaluated. 

2. Methods 

2.1. Generalized Pareto distribution 

The Pickands–Balkema–de-Haan theorem ( Balkema and 

de Haan, 1974; Pickands, 1975 ) states that for a broad class 

of functions the values above a sufficient large threshold c fol- 

low an approximate generalized Pareto distribution (GPD). The 

cumulative distribution function F ( x ) of the GPD is given by: 

F (x ) = 1 −
(

1 + 

a 

b 
(x − c) 

)− 1 
a ; a � = 0 

F (x ) = 1 − e −
x −c 

b ; a = 0 . 

For the density function f ( x ) we yield correspondingly: 

f (x ) = 

1 

b 

(
1 + 

a 

b 
(x − c) 

)− 1 
a −1 

; a � = 0 

f (x ) = 

1 

b 
e −

x −c 
b ; a = 0 . 

a denotes the shape parameter, b the scale parameter, and c the 

threshold. The T-year return level x T can be calculated as follows 

( T obs denotes the time period of the observation and N the number 

of exceedances over the threshold): 

F (x T ) = 1 − T obs 

N 

1 

T 

→ x T = c + 

b 

a 

[(
T obs 

N 

1 

T 

)−a 

− 1 

]
; a � = 0 

→ x T = c − b · ln 

(
T obs 

N 

1 

T 

)
; a = 0 . (1) 

One important property of the GPD is self-similarity. Even if the 

threshold of a GPD is changed, the resulting distribution is still 

a GPD, but with a different value for the mean number of ex- 

ceedances. Let us consider an initial threshold c 1 with a GPD with 

parameters a 1 , b 1 , and mean number of exceedances N 1 . If the 

threshold is raised to c 2 = c 1 + �c, the values of the parameters of 

the new GPD ( a 2 , b 2 ) and mean number of exceedances N 2 change 

as follows (see e.g. Coles, 2001 and Scarrott and MacDonald, 2012 ) 

: 

a 2 = a 1 = a 

b 2 = b 1 + a �c (2) 

N 2 = N 1 

(
1 + 

a 

b 1 
�c 

)− 1 
a 

. (3) 

In turn, if the mean number of exceedances is changed from N 1 to 

N 2 , the threshold changes by: 

�c = 

b 1 
a 

·
[(

N 1 

N 2 

)a 

− 1 

]
. (4) 

2.2. Bootstrap – general outline and percentile bootstrap 

The overall aim is to sample N values (same sample size as 

the observed sample) from the GPD (we only use parametric boot- 

strap approaches throughout this article) with the parameters (a = 

a k , b = 1 , c = 0) (which can be easily extended to all possible b and 

c ) that belongs to the Poisson distribution with mean value θ = N. 

In principle the sampling needs to be done for both distributions 

(first from the Poisson distribution in order to sample the number 

of exceedances over the threshold and then the values itself from 

the GPD). However, another valid approach (which has numerical 

advantages later on needed) would be to keep the sample size N 

constant and vary the threshold. To achieve this, we transform the 

problem as follows: First, we choose a value M, M > N such that 

in practice basically all samples drawn from the Poisson distribu- 

tion with mean value M have more than N values. Second, in order 

to correspond to the initial problem (mean number of exceedances 

N with corresponding GPD with parameters (a = a k , b = 1 , c = 0) ), 

the parameters b and c are transformed according to Eqs. (4) and 

(2) . This yields the set of parameters: 

a = a k 

b = 

(
N 

M 

)a k 

c = − 1 

a k 

[
1 −

(
N 

M 

)a k 
]

(5) 

Finally, we sample first from the Poisson distribution (with mean 

value M ) and the GPD with the parameters given in Eq. (5) above. 

Then we select only the N largest values. The resulting sample 

still corresponds to the parent GPD with parameters (a = a k , b = 

1 , c = 0) . We estimated the parameters of each sample using max- 

imum likelihood. While Hosking and Wallis (1987) have pointed 

out that methods like probability weighted moments or method 

of moments often lead to smaller bias and RMSE, such approaches 

can lead to inconsistent results (see Ashkar and Tatsambon, 2007 ). 

These inconsistencies occur if values of the observed sample are 

outside of the range of the estimated distribution. After determi- 

nation of the parameters, the appropriate return levels are de- 

termined for each of the B samples. For the percentile bootstrap 

approach, the (1 − α) · 100 % double sided CI is defined by the 

α/ 2 · (B + 1) th and (1 − α/ 2) · (B + 1) th smallest value of return 

levels ( Carpenter and Bithell, 20 0 0 ) to account for the respective 

empirical quantiles ( Makkonen, 2008 ). In this work, B = 9999 sim- 

ulations were used. 

2.3. Likelihood function of the peaks-over-threshold-process 

The test inversion bootstrap (TIB) as well as the Profile Like- 

lihood requires the likelihood function of the whole POT process, 

and not only the one for the GPD. The likelihood function for POT 

problem can be expressed as follows: 

L = L 

Pois · L 

GPD , 

where L 

Pois and L 

GPD are the likelihood functions of the Poisson 

distribution and the GPD, respectively. For the log-likelihood func- 

tion L = ln (L ) , we get: 

L = L Pois + L GPD . (6) 
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