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a b s t r a c t 

The paper deals with the crucial problem of the groundwater parameter estimation that is the basis for 

efficient modeling and reclamation activities. A hierarchical Bayesian approach is developed: it uses the 

Akaike’s Bayesian Information Criteria in order to estimate the hyperparameters (related to the covariance 

model chosen) and to quantify the unknown noise variance. The transmissivity identification proceeds in 

two steps: the first, called empirical Bayesian interpolation, uses Y ∗ ( Y = ln T ) observations to interpolate Y 

values on a specified grid; the second, called empirical Bayesian update, improve the previous Y estimate 

through the addition of hydraulic head observations. The relationship between the head and the ln T has 

been linearized through a perturbative solution of the flow equation. In order to test the proposed ap- 

proach, synthetic aquifers from literature have been considered. The aquifers in question contain a variety 

of boundary conditions (both Dirichelet and Neuman type) and scales of heterogeneities ( σ 2 
Y = 1 . 0 and 

σ 2 
Y = 5 . 3 ). The estimated transmissivity fields were compared to the true one. The joint use of Y ∗ and 

head measurements improves the estimation of Y considering both degrees of heterogeneity. Even if the 

variance of the strong transmissivity field can be considered high for the application of the perturbative 

approach, the results show the same order of approximation of the non-linear methods proposed in lit- 

erature. The procedure allows to compute the posterior probability distribution of the target quantities 

and to quantify the uncertainty in the model prediction. Bayesian updating has advantages related both 

to the Monte-Carlo (MC) and non-MC approaches. In fact, as the MC methods, Bayesian updating allows 

computing the direct posterior probability distribution of the target quantities and as non-MC methods 

it has computational times in the order of seconds. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

One of the most interesting problems in groundwater hydrology 

is the identification of contaminant sources and their release his- 

tories. This knowledge is of particular importance to assess blame, 

forecast the fate of solutes in aquifers and to design efficient reme- 

diation actions. During the last two decades a substantial number 

of approaches aimed at identifying the contaminant source posi- 

tion and/or its release in time were developed (see for example the 

works of Woodbury and Ulrych, 1996; Butera et al., 2013; Cupola 

et al., 2015; Koch and Nowak, 2016; Yeh et al., 2016 ). All the pro- 

posed approaches are promising and for the most part efficient, 
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but do require full knowledge of the hydraulic properties of the 

investigated aquifer, specifically, hydraulic conductivity, hydraulic 

head, porosity and the like. Unfortunately, the complete spatial dis- 

tribution of these hydraulic properties is never fully known, never 

uniform, and is dependent on the knowledge base of an observer. 

The reader will likely be aware that a large number of method- 

ologies are also aimed at strictly estimating hydraulic parameters 

with different degrees of reliability and applicability; see the re- 

views by Kitanidis (1996), McLaughlin and Townley (1996), Zim- 

merman et al. (1998), Hendricks Franssen et al. (2009) and Zhou et 

al. (2014) . The challenge of estimating hydraulic parameters is still 

motivating the development of new approaches; see for instance 

the works of Zanini and Kitanidis (2009), Liu et al. (2010), Maj- 

dalani and Akerer (2011), Zhang (2014), Berg and Illman (2015), Xu 

and Gómez-Hernández (2015), Marinoni et al. (2016) and Riva et 

al. (2017) . These references are by no means exhaustive and serve 

only to highlight the importance of the overall problem of param- 

eter estimation. 

http://dx.doi.org/10.1016/j.advwatres.2017.07.022 
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One class of methods revolves around information measures. 

Woodbury and Ulrych (20 0 0) proposed a very efficient hierarchi- 

cal (full) Bayesian approach to the groundwater inverse problem 

for steady-state groundwater flow. These authors adopt a stochastic 

conceptual framework for the porous media under consideration 

and they transformed the non-linear inverse problem into a linear 

one. The approach consists in two steps: the first one (typical lin- 

ear interpolation) is by Bayesian updating ( Woodbury, 1989 ) that 

was used to condition prior estimates of an ln( T ) field with ln( T ) 

measurements; then in the second one hydraulic head measure- 

ments were incorporated into the updating procedure by adopting 

a linearized aquifer equation. This total approach requires “soft”

geological information in the form of an expected value of a pri- 

ory probability distribution function and on a correlation function. 

This approach allows to consider data from different sources (for 

instance transmissivity values and head levels) and to constrain 

the inverse problem with knowledge on the system. Kennedy and 

Woodbury (2002) applied Woodbury and Ulrych’s (20 0 0) approach 

to estimate the transmissivity of a carbonate and a sandstone 

aquifer with reasonable results. Jiang et al. (2004) generalized 

Woodbury and Ulrych’s method implementing different boundary 

conditions and estimating the transmissivity field of a well-known 

literature case (Edwards’s aquifer). Jiang and Woodbury (2006) ex- 

tended the approach updating the transmissivity field incorporat- 

ing thermal (heat) observations. For the Edwards Aquifer, Painter 

et al. (2007) augmented the approach with first upscaling local T 

measurements to block scales and compared the results obtained 

through the Bayesian approach to standard interpolation methods. 

As Riva et al. (2011) highlighted, the estimation of hyperparam- 

eters is a crucial issue. In the above-mentioned works, the un- 

known hyperparameters that characterize the mean, the observa- 

tion error and the covariance function can be assumed known or 

inferred from data, ( Woodbury and Ulrych, 20 0 0; Jiang et al., 20 04; 

Painter et al., 2007 ) or estimated ( Woodbury and Ulrych, 20 0 0; 

Kennedy and Woodbury, 2002; Jiang and Woodbury, 2006 ). The 

estimation of the hyperparameters has been carried out through a 

minimum relative entropy approach ( Woodbury and Ulrych, 1993, 

1996 ). The method basically assigns a prior without adding any 

unknown information and is, therefore, considered maximally un- 

committed with respect to unknown information, see for details 

Woodbury and Ulrych (1993 ) and Woodbury and Ulrych (20 0 0 ). 

Our current work revisits the Bayesian approach proposed by 

Woodbury and Ulrych (20 0 0) and recasts it in an empirical frame- 

work. The idea behind the empirical Bayes approach is that the 

prior is based on information contained in the input data ( Robbins, 

1964 ). In this framework, it is considered that the prior probabil- 

ities are not fixed as in classical Bayesian modeling. Here, infor- 

mation on the prior is considered available in the actual data that 

is measured. The transmissivity field is estimated on the basis of 

transmissivity and hydraulic head observations using a two phase 

procedure: (1) estimation using only transmissivity observations; 

(2) update of the estimate through adding hydraulic head observa- 

tions. In both phases the hyper-parameters of the prior pdfs can be 

determined by a special procedure as noted below. 

The objectives of this paper are: 

1. to amend the Woodbury and Ulrych (20 0 0) procedure with 

Akaike’s Bayesian Information Criteria (ABIC) for estimating the 

hyperparameters. This approach treats the overall approxima- 

tion capability for the unknowns of the entire models ( Ulrych et 

al., 2001; Shibata, 2002; Woodbury and Ferguson, 2006; Zanini 

and Woodbury, 2016 ); 

2. to extend the Woodbury and Ulrych (20 0 0) procedure to 

strongly heterogeneous cases; 

3. to provide an assessment of the reliability of the results; 

4. to test the influence on the performance of the method of dif- 

ferent boundary conditions. 

5. to evaluate the computational robustness of the proposed ap- 

proach considering different degrees of heterogeneity; 

6. to evaluate the improving in the estimation process as the 

number of observations increases. 

2. Research method 

2.1. Empirical Bayesian solution to linear interpolation 

In this work we follow an empirical approach to obtain the so- 

lution of an inverse problem consisting in the identification of a 

groundwater hydraulic parameter field with available observations 

of transmissivity and hydraulic head. Recalling briefly the Bayesian 

approach for inverse problems in groundwater (more details are 

available in Zanini and Woodbury (2016) , amongst other sources), 

given the vectors of observed data d 

∗ and the unknown parameters 

m , we consider the fundamental equation (Bayes theorem): 

p ( m | d 

∗, I ) = 

p ( d 

∗| m , I ) p ( m | I ) ∫ 
p ( d 

∗| m , I ) p ( m | I ) dm 

(1) 

where p ( m | I ) is the prior probability density (pdf) of the model pa- 

rameters, given the prior information I;p ( d 

∗| m , I ) is the likelihood 

of observing d 

∗ given the model parameters m and the prior in- 

formation I, p ( m | d 

∗, I ) is the posterior probability density of the 

vector m after the occurrence of d 

∗ and in validity of the prior 

information I . The integral in the denominator of ( 1 ) is a normal- 

izing constant, called “predictive distribution” and written also as 

p ( d 

∗| I ), that represents the pdf of observing the data d 

∗ with the 

uncertainty in the model parameters marginalized out of consid- 

eration. In the empirical Bayes approach the denominator depends 

on any hyperparameters in the prior. 

Consider now the linear inverse problem: 

d 

∗ = Gm + ν (2) 

where d 

∗ is an observed data vector ( N × 1), m is model vec- 

tor ( M × 1) which contains the unknowns, G is the kernel matrix 

( N × M ) which transforms model space into data space and ν is 

the noise vector ( M × 1). Here, the “true” data d are unknown to 

us, because they are corrupted by noise with the statistical pa- 

rameters given below. Given d 

∗, the object of an inversion is to 

extract information about the model, m . If one assumes that the 

errors in the observations and the prior information on the model 

parameters are adequately described by the Gaussian hypothesis, 

then the posterior probability in the model space is also Gaussian 

( Tarantola, 1987 ). 

The assumption of Gaussian hypothesis follows many previous 

approaches carried out by, for example, Kitanidis and Vomvoris 

(1983) , Carrera and Neuman (1986) , Kitanidis (1995) , Snodgrass 

and Kitanidis (1997) , Woodbury and Ulrych (20 0 0) , and Ulrych et 

al. (2001) . 

The errors are considered independent with a correlation ma- 

trix C d = σ 2 
d 

I , where I is the identity matrix, and σ
d 

(standard de- 

viations of the error) is a measure of discrepancy between ob- 

servations and model predictions due to several sources of er- 

rors such as: measurement errors, roundoff errors and conceptual 

model misfit. The component due to the measurement error can be 

reasonable assumed uncorrelated; but the component due to mod- 

eling and conceptual uncertainty is likely systematic and corre- 

lated ( Gaganis and Smith, 2001 ). Unfortunately the information to 

characterize the structure of C d is rarely available; for this reason 

we assumed the errors uncorrelated in agreement with literature 

works (See for instance Hoeksema and Kitanidis, 1984 , Woodbury 

et Ulrych, 20 0 0 and Fienen et al., 20 09 ) and in fact is a choice that 

can be rationalized by Maximum Entropy considerations. 
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